开学活动
搜索
    上传资料 赚现金

    2022年最新强化训练冀教版九年级数学下册第三十章二次函数专题测评试题(精选)

    2022年最新强化训练冀教版九年级数学下册第三十章二次函数专题测评试题(精选)第1页
    2022年最新强化训练冀教版九年级数学下册第三十章二次函数专题测评试题(精选)第2页
    2022年最新强化训练冀教版九年级数学下册第三十章二次函数专题测评试题(精选)第3页
    还剩33页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版九年级下册第30章 二次函数综合与测试随堂练习题

    展开

    这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试随堂练习题,共36页。试卷主要包含了对于抛物线下列说法正确的是等内容,欢迎下载使用。
    九年级数学下册第三十章二次函数专题测评
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图所示,一座抛物线形的拱桥在正常水位时,水而AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )

    A.米 B.10米 C.米 D.12米
    2、抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:
    x

    -3
    -2
    -1
    0
    1

    y

    -6
    0
    4
    6
    6

    给出下列说法:
    ①抛物线与y轴的交点为(0,6);
    ②抛物线的对称轴在y轴的右侧;
    ③抛物线的开口向下;
    ④抛物线与x轴有且只有1个公共点.
    以上说法正确是( )
    A.① B.①② C.①②③ D.①②③④
    3、抛物线的对称轴是( )
    A.直线 B.直线 C.直线 D.直线
    4、在平面直角坐标系中,将抛物线y=x2﹣2x+1先向左平移3个单位长度,再向下平移2个单位长度,经过两次平移后所得抛物线的顶点坐标是(  )
    A.(4,2) B.(﹣2,2) C.(4,﹣2) D.(﹣2,﹣2)
    5、如图,二次函数y=ax2+bx+c(a≠0)的图象的对称轴是直线x=1,且经过点(0,2).有下列结论:①abc<0;②b2﹣4ac>0:③9a+3b+c<2;④3a+c<0;⑤若(﹣,y1),(﹣,y2),(4,y3)是抛物线上的点,则y3<y1<y2,其中正确结论的个数是( )

    A.2 B.3 C.4 D.5
    6、在抛物线的图象上有三个点,,,则、、的大小关系为( )
    A. B. C. D.
    7、将二次函数y=2x2的图像先向左平移2个单位,再向上平移3个单位,得到的函数图像的表达式为(  )
    A.y=2(x+2)2+3 B.y=2(x-2)2+3 C.y=2(x+2)2-3 D.y=2(x-2)2-3
    8、对于抛物线下列说法正确的是( )
    A.开口向下 B.其最大值为-2 C.顶点坐标 D.与x轴有交点
    9、已知二次函数,若时,函数的最大值与最小值的差为4,则a的值为( )
    A.1 B.-1 C. D.无法确定
    10、如图,二次函数的图象经过点,其对称轴为直线,有下列结论:①;②;③;④;⑤若,是抛物线上两点,且,则实数的取值范围是.其中正确结论是( )

    A.①③④ B.②④⑤ C.①③⑤ D.①③④⑤
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在平面直角坐标系中,抛物线y=a(x﹣1)2+k(a、k为常数)与x轴交于点A、B,与y轴交于点C,CD∥x轴,与抛物线交于点D.若点A的坐标为(﹣1,0),则线段OB与线段CD的长度和为_____.

    2、若关于的函数与轴只有一个交点,则实数的值为____.
    3、定义:在平面直角坐标系中,若点的横、纵坐标都为整数,则把这样的点叫做“整点”.如:A(1,0),B(﹣3,2)都是“整点”,抛物线y=ax2﹣2ax+a+2(a<0)与x轴交于P,Q两点,若该抛物线在P,Q之间的部分与线段PQ所围的区域(不包括边界)恰有3个整点,则a的取值范围是_____.
    4、如图边长为n的正方形OABC的边OA、OC分别在x轴和y轴的正半轴上,A1、A2、A3、...、An﹣1为OA的n等分点,B1、B2、B3、...、Bn﹣1为CB的n等分点,连接A1B1、A2B2、A3B3、...、An﹣1Bn﹣1,分别交于点C1、C2、C3、...、Cn﹣1.当B25C25=8C25A25时,则n=_____.

    5、加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率y与加工时间x(单位:min)满足函数表达式y=-0.3x2+1.5x-1,则最佳加工时间为__min.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,Rt中,.点P从点A出发,沿射线方向以每秒1个单位长度的速度向终点B运动,当点P不与点A重合时,将线段绕点P旋转使(点在点P右侧),过点作交射线于点M,设点P运动的时间为t(秒).

    (1)的长为___________(用含t的代数式表示)
    (2)当落在的角平分线上时,求此时t的值.
    (3)设与重叠部分图形的面积为S(平方单位),求S关于t的函数关系式.并求当t为何值时,S有最大值,最大值为多少?
    2、如图,△ADB与△BCD均为等边三角形,延长AD到E,使∠AEC=90°,AD=5,动点M从点B出发,沿BD方向运动,移动速度为1个单位/秒,同时,点N由点D向点C运动,移动速度为2个单位/秒,其中一个到终点,都停止运动,连接AM,CM,MN,NE,设运动时间为t(0≤t≤2.5)

    (1)t为何值时,MN∥BC;
    (2)连接BN,t为何值时,BNE三点共线;
    (3)设四边形AMNE的面积为S,求S与t的函数关系式;
    (4)是否存在某一时刻t,使N在∠CMD的角平分线上,若存在,求出t近似值;若不存在,说明理由.
    3、如图,正比例函数y1=x与二次函数y2=x2-bx的图象相交于O(0,0),A(4,4)两点.

    (1)求 b 的值;
    (2)当 y1< y2 时,直接写出 x 的取值范围.
    4、已知二次函数的图象经过点.
    (1)求二次函数的表达式;
    (2)求二次函数的图象与轴的交点坐标.
    5、如图,在平面直角坐标系中,二次函数y=x2+bx+c的图像与x轴交于点A(1,0)、B(4,0),与y轴交于点C. 已知点E(0,3)、点F(4,t)(t>3),点M是线段EF上一动点,过M作x轴的垂线交抛物线于点N.

    (1)直接写出二次函数的表达式:
    (2)若t=5,当MN最大时,求M的坐标;
    (3)在点M从点E运动至点F的过程中,若线段MN的长逐渐增大,求t的取值范围

    -参考答案-
    一、单选题
    1、B
    【解析】
    【分析】
    以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax2,由此可得A(-10,-4),B(10,-4),即可求函数解析式,再将y=-1代入解析式,求出C、D点的横坐标即可求CD的长.
    【详解】

    以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,
    设抛物线的解析式为y=ax2,
    ∵O点到水面AB的距离为4米,
    ∴A、B点的纵坐标为-4,
    ∵水面AB宽为20米,
    ∴A(-10,-4),B(10,-4),
    将A代入y=ax2,
    -4=100a,
    ∴,
    ∴,
    ∵水位上升3米就达到警戒水位CD,
    ∴C点的纵坐标为-1,

    ∴x=±5,
    ∴CD=10,
    故选:B.
    【点睛】
    本题考查二次函数的应用,根据题意建立合适的直角坐标系,在该坐标系下求二次函数的解析式是解题的关键.
    2、C
    【解析】
    【分析】
    根据表中数据和抛物线的对称性,可得抛物线的对称轴是直线x=,可得到抛物线的开口向下,再根据抛物线的性质即可进行判断.
    【详解】
    解:根据图表,抛物线与y轴交于(0,6),故①正确;
    ∵抛物线经过点(0,6)和(1,6),
    ∴对称轴为x==>0,即抛物线的对称轴在y轴的右侧,故②正确;
    当x0,与与x轴有交点,∴D选项正确;
    故选:D.
    【点睛】
    本题考查了二次函数的性质,掌握开口方向,对称轴、顶点坐标以及与x轴的交点坐标的求法是解决问题的关键.
    9、C
    【解析】
    【分析】
    分a>0或a<0两种情况讨论,求出y的最大值和最小值,即可求解;
    【详解】
    当a>0时,∵对称轴为x=,
    当x=1时,y有最小值为2,当x=3时,y有最大值为4a+2,
    ∴4a+2-2=4.
    ∴a=1,
    当a<0时,同理可得
    y有最大值为2; y有最小值为4a+2,
    ∴2-(4a+2)=4,
    ∴a=-1,
    综上,a的值为
    故选:C
    【点睛】
    本题考查了二次函数的性质,二次函数图象上点的坐标特征等知识,利用分类思想解决问题是本题的关键.
    10、C
    【解析】
    【分析】
    根据开口方向,对称轴,以及与轴负半轴的交点位置判断的符号即可判断①,根据二次函数图象的对称性可知时的函数值与的函数值相等,进而可得,即可判断②,根据对称轴为以及顶点坐标公式即可判断③,根据二次函数图象与轴有两个交点,则,即可判断④,根据对称性可得时的函数值与时的函数值相等,进而根据抛物线的开口方向以及,即可判断,根据顶点位置的函数值最小,进而即可判断⑤
    【详解】
    解:∵抛物线的开口朝上,则,对称轴,可得,根据抛物线与轴交于负半轴,则

    故①正确;
    ∵二次函数的图象经过点,
    则当时,
    对称轴为直线,则时的函数值与的函数值相等,
    时,

    故②不正确
    对称轴为直线,
    ∴,即
    故③正确;
    ∵二次函数图象与轴有两个交点,则

    故④错误;
    对称轴为直线,则时的函数值与的函数值相等,

    ,是抛物线上两点,且,抛物线开口向上,

    故⑤正确
    故正确的是①③⑤
    故选C
    【点睛】
    本题考查了二次函数图象的性质以及与各系数之间的关系,二次函数与一元一次不等式,根据图象判断方程的根的情况,二次函数的对称性,掌握二次根式图象的性质是解题的关键.
    二、填空题
    1、5
    【解析】
    【分析】
    先求出抛物线y= a(x-1)2+k(a、k为常数)的对称轴,然后根据A和B、C和D均关于对称轴直线x=1对称,分别求出B和D点的坐标,即可求出OB和CD的长.
    【详解】
    解:∵抛物线y=a(x-1)2+k(a、k为常数),
    ∴对称轴为直线x=1,
    ∵点A和点B关于直线x=1对称,且点A(-1,0),
    ∴点B(3,0),
    ∴OB=3,
    ∵C点和D点关于x=1对称,且点C(0,a+k),
    ∴点D(2,a+k),
    ∴CD=2,
    ∴线段OB与线段CD的长度和为5,
    故答案为5.
    【点睛】
    本题主要考查了二次函数的图象与性质,二次函数与与坐标轴交点的知识,解答本题的关键求出抛物线y=a(x-1)2+k(a、k为常数)的对称轴为x=1,此题难度不大.
    2、1
    【解析】
    【分析】
    对于二次函数解析式,令得到关于的一元二次方程,由抛物线与轴只有一个交点,得到根的判别式等于0,即可求出的值.
    【详解】
    解:对于二次函数,
    令,得到,
    二次函数的图象与轴只有一个交点,
    △,
    解得:,
    故答案为:1.
    【点睛】
    此题考查了抛物线与轴的交点,解题的关键是熟练掌握二次函数的性质.
    3、
    【解析】
    【分析】
    将函数解析式化为顶点式,确定图象的对称轴及顶点坐标,得到3个整点的位置,由此得到不等式组,求解即可.
    【详解】
    解:∵y=ax2﹣2ax+a+2=,
    ∴函数的对称轴为直线x=1,顶点坐标为(1,2),
    ∴P,Q两点关于直线x=1对称,
    根据题意,抛物线y=ax2﹣2ax+a+2(a<0)与x轴交于P,Q两点(不包括边界)恰有3个整点,这些整点是(0,1),(1,1),(2,1),
    ∵当x=0时,y=a+2,
    ∴,
    当x=-1时,y=4a+2,
    ∴,
    ∴,解得,
    故答案为:.

    【点睛】
    此题考查了将二次函数一般式化为顶点式,二次函数的性质,一元一次不等式组的应用,根据二次函数的对称轴及顶点确定3个点的位置,由此顶点不等式组是解题的关键.
    4、75
    【解析】
    【分析】
    根据题意表示出OA25,B25A25的长,由B25C25=8C25A25确定点C25的坐标,代入解析式计算得到答案.
    【详解】
    解:∵正方形OABC的边长为n,点A1,A2,…,An-1为OA的n等分点,点B1,B2,…,Bn-1为CB的n等分点,
    ∴OA25= •n=25,A25B25=n,
    ∵B25C25=8C25A25,
    ∴C25(25,),
    ∵点C25在上,
    ∴,
    解得n=75.
    故答案为:75.
    【点睛】
    本题考查的是二次函数图象上点的特征和正方形的性质,根据正方形的性质表示出点C25的坐标是解题的关键.
    5、2.5.
    【解析】
    【分析】
    根据二次函数的对称轴公式直接计算即可.
    【详解】
    解:∵的对称轴为(min),
    故:最佳加工时间为2.5min,
    故答案为:2.5.
    【点睛】
    此题主要考查了二次函数性质的应用,涉及求顶点坐标、对称轴方程等,记住抛物线顶点公式是解题关键.
    三、解答题
    1、 (1)
    (2)
    (3),当时,S有最大值
    【解析】
    【分析】
    (1)先利用勾股定理求出,然后证明,得到,即,则,,即可得到;
    (2)延长交BC于D,由,得到,,则
    再由在∠ABC的角平分线上,,,得到,则,由此求解即可;
    (3)先求出当点正好落在BC上时,,然后讨论当△ABC与重叠部分即为,然后求出当点M恰好与B重合时,,讨论当时,如图3所示,△ABC与重叠部分即为四边形PMTS,当时,如图4所示,,△ABC与重叠部分即为△BPS,由此求解即可.
    (1)
    解:由旋转的性质可得,
    ∵在Rt△ABC,∠ACB=90°,AC=4,BC=3,
    ∴,
    ∵,,
    ∴,,
    ∴,
    ∴,即,
    ∴,,
    ∴;
    (2)
    解:如图所示,延长交BC于D,
    ∵∠ACB=90°,
    ∴AC⊥BC,
    ∵,
    ∴,,

    ∵在∠ABC的角平分线上,,,
    ∴,
    ∴,
    ∴,
    ∴,
    又∵,
    ∴,
    解得;

    (3)
    解:如图2所示,当点正好落在BC上时,
    ∴,
    ∵,
    ∴,
    ∴,即,
    ∴,
    又∵,
    ∴,
    解得,
    当,如图1所示,△ABC与重叠部分即为,
    ∴此时;

    当点M恰好与B重合时,此时,
    ∴,
    解得,
    当时,如图3所示,△ABC与重叠部分即为四边形PMTS,
    ∴,
    同理可证,
    ∴,即,,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴即,
    ∴,
    ∴,
    ∴;

    当时,如图4所示,,△ABC与重叠部分即为△BPS,
    同理可证,
    ∴,即,
    ∴,,
    ∴,
    ∴综上所述,
    ∴,
    ∴由二次函数的性质可知,
    ∴当时,S有最大值.

    【点睛】
    本题主要考查了相似三角形的性质与判定,勾股定理,角平分线的性质,熟知相关知识是解题的关键.
    2、 (1)当秒;MN∥BC;
    (2)t=时,B、N、E三点共线;
    (3)S=(0≤t≤2.5);
    (4)存在某一时刻t≈1.148时,使N在∠CMD的角平分线上.
    【解析】
    【分析】
    (1)根据MN∥BC;证明△MDN为等边三角形,得出DM=DN,即5-t=2t,解方程即可;
    (2)根据∠ADE为平角,求出∠DCE=180°-∠CDE-∠CED=180°-60°-90°=30°,得出DE=,CE=,根据B、N、E三点共线;得出对顶角性质∠BNC=∠END,再证△BCN∽△EDN,得出即,求出DN即可;
    (3)过点B作BF⊥AE与F,过点M作MG⊥AE于G,MH⊥DC于H,过N作NI⊥DE于I,先证BD为∠ADC的平分线,得出MG=MH,再证△MGD∽△BFD,,,求出,分别求出S△AMD=,S△MDN=S△DEN=,再根据S四边形AMNE=S△AMD+S△MDN+S△DEN=++=(0≤t≤2.5)即可;
    (4)过点M作MK⊥BC于K,根据等边三角形性质可得∠KBM=60°,可求∠KMB=90°-60°=30°,利用30°直角三角形性质得出BK=,利用勾股定理得出MK=MC,根据角平分线定理使N在∠CMD的角平分线上,得出即,整理得:,化为两函数的交点,用描点法画函数图像,列表连线得出量函数图像Y=8t3随t增大而增大,Y=5(3t-5)2在0<t≤随t的增大而减小,t≈1.148时,两函数值相等即可.
    (1)
    解:∵△ADB与△BCD均为等边三角形,AD=5,
    ∴BD=DC=AD=5,
    ∴BM=t,DN=2t,
    ∵MN∥BC;
    ∴∠NMD=∠DBC=60°=∠MDN,
    ∴△MDN为等边三角形,
    ∴DM=DN,即5-t=2t,
    解得秒;
    ∴当秒;MN∥BC;
    (2)
    解:∵∠ADE为平角,
    ∴∠CDE=180°-∠ADB-∠BDC=180°-60°-60°=60°,
    ∵∠CEA=90°,
    ∴∠DCE=180°-∠CDE-∠CED=180°-60°-90°=30°,
    ∴DE=,CE=,
    ∵B、N、E三点共线;
    ∴∠BNC=∠END,
    ∵∠BCD=∠CDE=60°,
    ∴BC∥DE,
    ∴△BCN∽△EDN,
    ∴即,
    解得DN=,
    ∴2t=,
    解得t=,
    ∴t=时,B、N、E三点共线;

    (3)
    解:过点B作BF⊥AE与F,过点M作MG⊥AE于G,MH⊥DC于H,过N作NI⊥DE于I,
    ∵∠BDA=∠BDC=60°,
    ∴BD为∠ADC的平分线,
    ∵MG⊥AE于G,MH⊥DC于H,
    ∴MG=MH,
    ∵BF⊥AE,MG⊥AE,
    ∴BF∥MG,
    ∴△MGD∽△BFD,
    ∴,
    ∵△ABD为等边三角形,BF⊥AD,
    ∴AF=DF=2.5,
    ∴BF=,
    ∵MB=t,
    ∴MD=5-t,
    ∴,
    解得:,
    ∴MH=,
    ∴S△AMD=,
    S△MDN=,
    ∵NI⊥DE,∠CED=90°,
    ∴NI∥CE,
    ∴△DNI∽△DCE,
    ∴即,
    ∴解得NI=,
    ∴S△DEN=,
    ∴S四边形AMNE=S△AMD+S△MDN+S△DEN=++=(0≤t≤2.5);

    (4)
    过点M作MK⊥BC于K,,过点C作CS∥MN,交DB延长线于S,

    ∵∠KBM=60°,
    ∴∠KMB=90°-60°=30°,
    ∴BK=,MK=,
    ∴MC,
    ∵使N在∠CMD的角平分线上,
    ∴∠CMN=∠DMN,
    ∵MN∥CS,
    ∴∠S=∠DMN,∠SCM=∠CMN,
    ∴∠S=∠SCM,
    ∴MS=MC,
    ∵MN∥CS,

    ∴即,
    整理得:,
    两函数的交点,
    用描点法画函数图像,
    列表
    t
    0

    1
    1.145
    Y=8t3
    0
    4
    8
    12.009
    t
    1
    1.15
    1.24

    Y=5(3t-5)2
    20
    12.0125
    8.19
    0

    Y=8t3随t增大而增大,Y=5(3t-5)2在0<t≤随t的增大而减小,
    ∴t≈1.148时,两函数值相等,

    ∴是存在某一时刻t≈1.148时,使N在∠CMD的角平分线上.
    【点睛】
    本题考查等边三角形性质,平行线判定,三点共线,对顶角,三角形相似,三角形面积函数,勾股定理,角平分线定理,列表法函数式图形,利用图像求方程的解是解题关键.
    3、 (1)
    (2)或
    【解析】
    【分析】
    (1)将点A(4,4)代入进行解答即可得;
    (2)由图像即可得.
    (1)
    解:将点A(4,4)代入得,


    解得.
    (2)
    解:由图像可知,当或时,.
    【点睛】
    本题考查了正比函数,二次函数,解题的关键是掌握正比函数的性质和二次函数的性质.
    4、 (1)y=x 2+ x﹣;
    (2)(0,﹣).
    【解析】
    【分析】
    (1)利用待定系数法,把代入函数解析式即可求;
    (2)令x=0,求得y的值即可得出结论.
    (1)
    解:∵二次函数y=a(x+1)2﹣2的图象经过点(﹣5,6),
    ∴a(﹣5+1)2﹣2=6.
    解得:a=.
    ∴二次函数的表达式为:y=(x+1)2﹣2,即y=x 2+ x﹣;
    (2)
    解:令x=0,则y=×(0+1)2﹣2=﹣,
    ∴二次函数的图象与y轴的交点坐标为(0,﹣).
    【点睛】
    本题主要考查了待定系数法确定抛物线的解析式,二次函数图象上点的坐标的特征,利用待定系数法确定函数的解析式是解题的关键.
    5、 (1)
    (2)
    (3)t≥9
    【解析】
    【分析】
    (1)从交点式即可求得表达式;
    (2)求得直线EF的关系式,设出,,表示出MN的关系式,配方求得结果;
    (3)先求得直线EF的关系式,设,,进而表示出MN的关系式,进一步求得结果.
    (1)
    由题意得,
    故答案是:;
    (2)
    ∵t=5
    ∴F(4,5),
    ∵E(0,3),F(4,5),
    ∴设直线EF的关系式为y=kx+b
    把E(0,3),F(4,5)代入y=kx+b得,

    解得,
    ∴直线EF的关系式是:y=x+3,
    设,,
    ∴,
    ∴当a=3时,MN最大=,
    当a=3时,,
    ∴;
    (3)
    ∵E(0,3),F(4,t),
    ∴直线EF的关系式是:,
    设,
    ∴,
    ∵对称轴,0≤m≤4,
    ∴当时,MN随m的增大而增大,
    ∴t≥9.
    【点睛】
    本题考查了二次及其图象性质,求一次函数的关系式等知识,解决问题的关键是熟练掌握二次函数图图象性质.

    相关试卷

    2020-2021学年第30章 二次函数综合与测试当堂检测题:

    这是一份2020-2021学年第30章 二次函数综合与测试当堂检测题,共32页。试卷主要包含了二次函数的最大值是,若点A,抛物线的顶点为等内容,欢迎下载使用。

    冀教版九年级下册第30章 二次函数综合与测试同步练习题:

    这是一份冀教版九年级下册第30章 二次函数综合与测试同步练习题,共30页。试卷主要包含了二次函数y=ax2﹣4ax+c,抛物线的对称轴是,抛物线,,的图象开口最大的是,已知平面直角坐标系中有点A等内容,欢迎下载使用。

    冀教版九年级下册第30章 二次函数综合与测试随堂练习题:

    这是一份冀教版九年级下册第30章 二次函数综合与测试随堂练习题,共32页。试卷主要包含了抛物线y=﹣2等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map