初中数学冀教版九年级下册第30章 二次函数综合与测试随堂练习题
展开
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试随堂练习题,共36页。试卷主要包含了对于抛物线下列说法正确的是等内容,欢迎下载使用。
九年级数学下册第三十章二次函数专题测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图所示,一座抛物线形的拱桥在正常水位时,水而AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )
A.米 B.10米 C.米 D.12米
2、抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:
x
…
-3
-2
-1
0
1
…
y
…
-6
0
4
6
6
…
给出下列说法:
①抛物线与y轴的交点为(0,6);
②抛物线的对称轴在y轴的右侧;
③抛物线的开口向下;
④抛物线与x轴有且只有1个公共点.
以上说法正确是( )
A.① B.①② C.①②③ D.①②③④
3、抛物线的对称轴是( )
A.直线 B.直线 C.直线 D.直线
4、在平面直角坐标系中,将抛物线y=x2﹣2x+1先向左平移3个单位长度,再向下平移2个单位长度,经过两次平移后所得抛物线的顶点坐标是( )
A.(4,2) B.(﹣2,2) C.(4,﹣2) D.(﹣2,﹣2)
5、如图,二次函数y=ax2+bx+c(a≠0)的图象的对称轴是直线x=1,且经过点(0,2).有下列结论:①abc<0;②b2﹣4ac>0:③9a+3b+c<2;④3a+c<0;⑤若(﹣,y1),(﹣,y2),(4,y3)是抛物线上的点,则y3<y1<y2,其中正确结论的个数是( )
A.2 B.3 C.4 D.5
6、在抛物线的图象上有三个点,,,则、、的大小关系为( )
A. B. C. D.
7、将二次函数y=2x2的图像先向左平移2个单位,再向上平移3个单位,得到的函数图像的表达式为( )
A.y=2(x+2)2+3 B.y=2(x-2)2+3 C.y=2(x+2)2-3 D.y=2(x-2)2-3
8、对于抛物线下列说法正确的是( )
A.开口向下 B.其最大值为-2 C.顶点坐标 D.与x轴有交点
9、已知二次函数,若时,函数的最大值与最小值的差为4,则a的值为( )
A.1 B.-1 C. D.无法确定
10、如图,二次函数的图象经过点,其对称轴为直线,有下列结论:①;②;③;④;⑤若,是抛物线上两点,且,则实数的取值范围是.其中正确结论是( )
A.①③④ B.②④⑤ C.①③⑤ D.①③④⑤
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在平面直角坐标系中,抛物线y=a(x﹣1)2+k(a、k为常数)与x轴交于点A、B,与y轴交于点C,CD∥x轴,与抛物线交于点D.若点A的坐标为(﹣1,0),则线段OB与线段CD的长度和为_____.
2、若关于的函数与轴只有一个交点,则实数的值为____.
3、定义:在平面直角坐标系中,若点的横、纵坐标都为整数,则把这样的点叫做“整点”.如:A(1,0),B(﹣3,2)都是“整点”,抛物线y=ax2﹣2ax+a+2(a<0)与x轴交于P,Q两点,若该抛物线在P,Q之间的部分与线段PQ所围的区域(不包括边界)恰有3个整点,则a的取值范围是_____.
4、如图边长为n的正方形OABC的边OA、OC分别在x轴和y轴的正半轴上,A1、A2、A3、...、An﹣1为OA的n等分点,B1、B2、B3、...、Bn﹣1为CB的n等分点,连接A1B1、A2B2、A3B3、...、An﹣1Bn﹣1,分别交于点C1、C2、C3、...、Cn﹣1.当B25C25=8C25A25时,则n=_____.
5、加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率y与加工时间x(单位:min)满足函数表达式y=-0.3x2+1.5x-1,则最佳加工时间为__min.
三、解答题(5小题,每小题10分,共计50分)
1、如图,Rt中,.点P从点A出发,沿射线方向以每秒1个单位长度的速度向终点B运动,当点P不与点A重合时,将线段绕点P旋转使(点在点P右侧),过点作交射线于点M,设点P运动的时间为t(秒).
(1)的长为___________(用含t的代数式表示)
(2)当落在的角平分线上时,求此时t的值.
(3)设与重叠部分图形的面积为S(平方单位),求S关于t的函数关系式.并求当t为何值时,S有最大值,最大值为多少?
2、如图,△ADB与△BCD均为等边三角形,延长AD到E,使∠AEC=90°,AD=5,动点M从点B出发,沿BD方向运动,移动速度为1个单位/秒,同时,点N由点D向点C运动,移动速度为2个单位/秒,其中一个到终点,都停止运动,连接AM,CM,MN,NE,设运动时间为t(0≤t≤2.5)
(1)t为何值时,MN∥BC;
(2)连接BN,t为何值时,BNE三点共线;
(3)设四边形AMNE的面积为S,求S与t的函数关系式;
(4)是否存在某一时刻t,使N在∠CMD的角平分线上,若存在,求出t近似值;若不存在,说明理由.
3、如图,正比例函数y1=x与二次函数y2=x2-bx的图象相交于O(0,0),A(4,4)两点.
(1)求 b 的值;
(2)当 y1< y2 时,直接写出 x 的取值范围.
4、已知二次函数的图象经过点.
(1)求二次函数的表达式;
(2)求二次函数的图象与轴的交点坐标.
5、如图,在平面直角坐标系中,二次函数y=x2+bx+c的图像与x轴交于点A(1,0)、B(4,0),与y轴交于点C. 已知点E(0,3)、点F(4,t)(t>3),点M是线段EF上一动点,过M作x轴的垂线交抛物线于点N.
(1)直接写出二次函数的表达式:
(2)若t=5,当MN最大时,求M的坐标;
(3)在点M从点E运动至点F的过程中,若线段MN的长逐渐增大,求t的取值范围
-参考答案-
一、单选题
1、B
【解析】
【分析】
以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax2,由此可得A(-10,-4),B(10,-4),即可求函数解析式,再将y=-1代入解析式,求出C、D点的横坐标即可求CD的长.
【详解】
以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,
设抛物线的解析式为y=ax2,
∵O点到水面AB的距离为4米,
∴A、B点的纵坐标为-4,
∵水面AB宽为20米,
∴A(-10,-4),B(10,-4),
将A代入y=ax2,
-4=100a,
∴,
∴,
∵水位上升3米就达到警戒水位CD,
∴C点的纵坐标为-1,
∴
∴x=±5,
∴CD=10,
故选:B.
【点睛】
本题考查二次函数的应用,根据题意建立合适的直角坐标系,在该坐标系下求二次函数的解析式是解题的关键.
2、C
【解析】
【分析】
根据表中数据和抛物线的对称性,可得抛物线的对称轴是直线x=,可得到抛物线的开口向下,再根据抛物线的性质即可进行判断.
【详解】
解:根据图表,抛物线与y轴交于(0,6),故①正确;
∵抛物线经过点(0,6)和(1,6),
∴对称轴为x==>0,即抛物线的对称轴在y轴的右侧,故②正确;
当x0,与与x轴有交点,∴D选项正确;
故选:D.
【点睛】
本题考查了二次函数的性质,掌握开口方向,对称轴、顶点坐标以及与x轴的交点坐标的求法是解决问题的关键.
9、C
【解析】
【分析】
分a>0或a<0两种情况讨论,求出y的最大值和最小值,即可求解;
【详解】
当a>0时,∵对称轴为x=,
当x=1时,y有最小值为2,当x=3时,y有最大值为4a+2,
∴4a+2-2=4.
∴a=1,
当a<0时,同理可得
y有最大值为2; y有最小值为4a+2,
∴2-(4a+2)=4,
∴a=-1,
综上,a的值为
故选:C
【点睛】
本题考查了二次函数的性质,二次函数图象上点的坐标特征等知识,利用分类思想解决问题是本题的关键.
10、C
【解析】
【分析】
根据开口方向,对称轴,以及与轴负半轴的交点位置判断的符号即可判断①,根据二次函数图象的对称性可知时的函数值与的函数值相等,进而可得,即可判断②,根据对称轴为以及顶点坐标公式即可判断③,根据二次函数图象与轴有两个交点,则,即可判断④,根据对称性可得时的函数值与时的函数值相等,进而根据抛物线的开口方向以及,即可判断,根据顶点位置的函数值最小,进而即可判断⑤
【详解】
解:∵抛物线的开口朝上,则,对称轴,可得,根据抛物线与轴交于负半轴,则
∴
故①正确;
∵二次函数的图象经过点,
则当时,
对称轴为直线,则时的函数值与的函数值相等,
时,
即
故②不正确
对称轴为直线,
∴,即
故③正确;
∵二次函数图象与轴有两个交点,则
即
故④错误;
对称轴为直线,则时的函数值与的函数值相等,
,是抛物线上两点,且,抛物线开口向上,
故⑤正确
故正确的是①③⑤
故选C
【点睛】
本题考查了二次函数图象的性质以及与各系数之间的关系,二次函数与一元一次不等式,根据图象判断方程的根的情况,二次函数的对称性,掌握二次根式图象的性质是解题的关键.
二、填空题
1、5
【解析】
【分析】
先求出抛物线y= a(x-1)2+k(a、k为常数)的对称轴,然后根据A和B、C和D均关于对称轴直线x=1对称,分别求出B和D点的坐标,即可求出OB和CD的长.
【详解】
解:∵抛物线y=a(x-1)2+k(a、k为常数),
∴对称轴为直线x=1,
∵点A和点B关于直线x=1对称,且点A(-1,0),
∴点B(3,0),
∴OB=3,
∵C点和D点关于x=1对称,且点C(0,a+k),
∴点D(2,a+k),
∴CD=2,
∴线段OB与线段CD的长度和为5,
故答案为5.
【点睛】
本题主要考查了二次函数的图象与性质,二次函数与与坐标轴交点的知识,解答本题的关键求出抛物线y=a(x-1)2+k(a、k为常数)的对称轴为x=1,此题难度不大.
2、1
【解析】
【分析】
对于二次函数解析式,令得到关于的一元二次方程,由抛物线与轴只有一个交点,得到根的判别式等于0,即可求出的值.
【详解】
解:对于二次函数,
令,得到,
二次函数的图象与轴只有一个交点,
△,
解得:,
故答案为:1.
【点睛】
此题考查了抛物线与轴的交点,解题的关键是熟练掌握二次函数的性质.
3、
【解析】
【分析】
将函数解析式化为顶点式,确定图象的对称轴及顶点坐标,得到3个整点的位置,由此得到不等式组,求解即可.
【详解】
解:∵y=ax2﹣2ax+a+2=,
∴函数的对称轴为直线x=1,顶点坐标为(1,2),
∴P,Q两点关于直线x=1对称,
根据题意,抛物线y=ax2﹣2ax+a+2(a<0)与x轴交于P,Q两点(不包括边界)恰有3个整点,这些整点是(0,1),(1,1),(2,1),
∵当x=0时,y=a+2,
∴,
当x=-1时,y=4a+2,
∴,
∴,解得,
故答案为:.
.
【点睛】
此题考查了将二次函数一般式化为顶点式,二次函数的性质,一元一次不等式组的应用,根据二次函数的对称轴及顶点确定3个点的位置,由此顶点不等式组是解题的关键.
4、75
【解析】
【分析】
根据题意表示出OA25,B25A25的长,由B25C25=8C25A25确定点C25的坐标,代入解析式计算得到答案.
【详解】
解:∵正方形OABC的边长为n,点A1,A2,…,An-1为OA的n等分点,点B1,B2,…,Bn-1为CB的n等分点,
∴OA25= •n=25,A25B25=n,
∵B25C25=8C25A25,
∴C25(25,),
∵点C25在上,
∴,
解得n=75.
故答案为:75.
【点睛】
本题考查的是二次函数图象上点的特征和正方形的性质,根据正方形的性质表示出点C25的坐标是解题的关键.
5、2.5.
【解析】
【分析】
根据二次函数的对称轴公式直接计算即可.
【详解】
解:∵的对称轴为(min),
故:最佳加工时间为2.5min,
故答案为:2.5.
【点睛】
此题主要考查了二次函数性质的应用,涉及求顶点坐标、对称轴方程等,记住抛物线顶点公式是解题关键.
三、解答题
1、 (1)
(2)
(3),当时,S有最大值
【解析】
【分析】
(1)先利用勾股定理求出,然后证明,得到,即,则,,即可得到;
(2)延长交BC于D,由,得到,,则
再由在∠ABC的角平分线上,,,得到,则,由此求解即可;
(3)先求出当点正好落在BC上时,,然后讨论当△ABC与重叠部分即为,然后求出当点M恰好与B重合时,,讨论当时,如图3所示,△ABC与重叠部分即为四边形PMTS,当时,如图4所示,,△ABC与重叠部分即为△BPS,由此求解即可.
(1)
解:由旋转的性质可得,
∵在Rt△ABC,∠ACB=90°,AC=4,BC=3,
∴,
∵,,
∴,,
∴,
∴,即,
∴,,
∴;
(2)
解:如图所示,延长交BC于D,
∵∠ACB=90°,
∴AC⊥BC,
∵,
∴,,
∴
∵在∠ABC的角平分线上,,,
∴,
∴,
∴,
∴,
又∵,
∴,
解得;
(3)
解:如图2所示,当点正好落在BC上时,
∴,
∵,
∴,
∴,即,
∴,
又∵,
∴,
解得,
当,如图1所示,△ABC与重叠部分即为,
∴此时;
当点M恰好与B重合时,此时,
∴,
解得,
当时,如图3所示,△ABC与重叠部分即为四边形PMTS,
∴,
同理可证,
∴,即,,
∴,
∴,
∵,
∴,
∴即,
∴,
∴,
∴;
当时,如图4所示,,△ABC与重叠部分即为△BPS,
同理可证,
∴,即,
∴,,
∴,
∴综上所述,
∴,
∴由二次函数的性质可知,
∴当时,S有最大值.
【点睛】
本题主要考查了相似三角形的性质与判定,勾股定理,角平分线的性质,熟知相关知识是解题的关键.
2、 (1)当秒;MN∥BC;
(2)t=时,B、N、E三点共线;
(3)S=(0≤t≤2.5);
(4)存在某一时刻t≈1.148时,使N在∠CMD的角平分线上.
【解析】
【分析】
(1)根据MN∥BC;证明△MDN为等边三角形,得出DM=DN,即5-t=2t,解方程即可;
(2)根据∠ADE为平角,求出∠DCE=180°-∠CDE-∠CED=180°-60°-90°=30°,得出DE=,CE=,根据B、N、E三点共线;得出对顶角性质∠BNC=∠END,再证△BCN∽△EDN,得出即,求出DN即可;
(3)过点B作BF⊥AE与F,过点M作MG⊥AE于G,MH⊥DC于H,过N作NI⊥DE于I,先证BD为∠ADC的平分线,得出MG=MH,再证△MGD∽△BFD,,,求出,分别求出S△AMD=,S△MDN=S△DEN=,再根据S四边形AMNE=S△AMD+S△MDN+S△DEN=++=(0≤t≤2.5)即可;
(4)过点M作MK⊥BC于K,根据等边三角形性质可得∠KBM=60°,可求∠KMB=90°-60°=30°,利用30°直角三角形性质得出BK=,利用勾股定理得出MK=MC,根据角平分线定理使N在∠CMD的角平分线上,得出即,整理得:,化为两函数的交点,用描点法画函数图像,列表连线得出量函数图像Y=8t3随t增大而增大,Y=5(3t-5)2在0<t≤随t的增大而减小,t≈1.148时,两函数值相等即可.
(1)
解:∵△ADB与△BCD均为等边三角形,AD=5,
∴BD=DC=AD=5,
∴BM=t,DN=2t,
∵MN∥BC;
∴∠NMD=∠DBC=60°=∠MDN,
∴△MDN为等边三角形,
∴DM=DN,即5-t=2t,
解得秒;
∴当秒;MN∥BC;
(2)
解:∵∠ADE为平角,
∴∠CDE=180°-∠ADB-∠BDC=180°-60°-60°=60°,
∵∠CEA=90°,
∴∠DCE=180°-∠CDE-∠CED=180°-60°-90°=30°,
∴DE=,CE=,
∵B、N、E三点共线;
∴∠BNC=∠END,
∵∠BCD=∠CDE=60°,
∴BC∥DE,
∴△BCN∽△EDN,
∴即,
解得DN=,
∴2t=,
解得t=,
∴t=时,B、N、E三点共线;
(3)
解:过点B作BF⊥AE与F,过点M作MG⊥AE于G,MH⊥DC于H,过N作NI⊥DE于I,
∵∠BDA=∠BDC=60°,
∴BD为∠ADC的平分线,
∵MG⊥AE于G,MH⊥DC于H,
∴MG=MH,
∵BF⊥AE,MG⊥AE,
∴BF∥MG,
∴△MGD∽△BFD,
∴,
∵△ABD为等边三角形,BF⊥AD,
∴AF=DF=2.5,
∴BF=,
∵MB=t,
∴MD=5-t,
∴,
解得:,
∴MH=,
∴S△AMD=,
S△MDN=,
∵NI⊥DE,∠CED=90°,
∴NI∥CE,
∴△DNI∽△DCE,
∴即,
∴解得NI=,
∴S△DEN=,
∴S四边形AMNE=S△AMD+S△MDN+S△DEN=++=(0≤t≤2.5);
(4)
过点M作MK⊥BC于K,,过点C作CS∥MN,交DB延长线于S,
∵∠KBM=60°,
∴∠KMB=90°-60°=30°,
∴BK=,MK=,
∴MC,
∵使N在∠CMD的角平分线上,
∴∠CMN=∠DMN,
∵MN∥CS,
∴∠S=∠DMN,∠SCM=∠CMN,
∴∠S=∠SCM,
∴MS=MC,
∵MN∥CS,
∴
∴即,
整理得:,
两函数的交点,
用描点法画函数图像,
列表
t
0
1
1.145
Y=8t3
0
4
8
12.009
t
1
1.15
1.24
Y=5(3t-5)2
20
12.0125
8.19
0
Y=8t3随t增大而增大,Y=5(3t-5)2在0<t≤随t的增大而减小,
∴t≈1.148时,两函数值相等,
∴是存在某一时刻t≈1.148时,使N在∠CMD的角平分线上.
【点睛】
本题考查等边三角形性质,平行线判定,三点共线,对顶角,三角形相似,三角形面积函数,勾股定理,角平分线定理,列表法函数式图形,利用图像求方程的解是解题关键.
3、 (1)
(2)或
【解析】
【分析】
(1)将点A(4,4)代入进行解答即可得;
(2)由图像即可得.
(1)
解:将点A(4,4)代入得,
解得.
(2)
解:由图像可知,当或时,.
【点睛】
本题考查了正比函数,二次函数,解题的关键是掌握正比函数的性质和二次函数的性质.
4、 (1)y=x 2+ x﹣;
(2)(0,﹣).
【解析】
【分析】
(1)利用待定系数法,把代入函数解析式即可求;
(2)令x=0,求得y的值即可得出结论.
(1)
解:∵二次函数y=a(x+1)2﹣2的图象经过点(﹣5,6),
∴a(﹣5+1)2﹣2=6.
解得:a=.
∴二次函数的表达式为:y=(x+1)2﹣2,即y=x 2+ x﹣;
(2)
解:令x=0,则y=×(0+1)2﹣2=﹣,
∴二次函数的图象与y轴的交点坐标为(0,﹣).
【点睛】
本题主要考查了待定系数法确定抛物线的解析式,二次函数图象上点的坐标的特征,利用待定系数法确定函数的解析式是解题的关键.
5、 (1)
(2)
(3)t≥9
【解析】
【分析】
(1)从交点式即可求得表达式;
(2)求得直线EF的关系式,设出,,表示出MN的关系式,配方求得结果;
(3)先求得直线EF的关系式,设,,进而表示出MN的关系式,进一步求得结果.
(1)
由题意得,
故答案是:;
(2)
∵t=5
∴F(4,5),
∵E(0,3),F(4,5),
∴设直线EF的关系式为y=kx+b
把E(0,3),F(4,5)代入y=kx+b得,
解得,
∴直线EF的关系式是:y=x+3,
设,,
∴,
∴当a=3时,MN最大=,
当a=3时,,
∴;
(3)
∵E(0,3),F(4,t),
∴直线EF的关系式是:,
设,
∴,
∵对称轴,0≤m≤4,
∴当时,MN随m的增大而增大,
∴t≥9.
【点睛】
本题考查了二次及其图象性质,求一次函数的关系式等知识,解决问题的关键是熟练掌握二次函数图图象性质.
相关试卷
这是一份2020-2021学年第30章 二次函数综合与测试当堂检测题,共32页。试卷主要包含了二次函数的最大值是,若点A,抛物线的顶点为等内容,欢迎下载使用。
这是一份冀教版九年级下册第30章 二次函数综合与测试同步练习题,共30页。试卷主要包含了二次函数y=ax2﹣4ax+c,抛物线的对称轴是,抛物线,,的图象开口最大的是,已知平面直角坐标系中有点A等内容,欢迎下载使用。
这是一份冀教版九年级下册第30章 二次函数综合与测试随堂练习题,共32页。试卷主要包含了抛物线y=﹣2等内容,欢迎下载使用。