![2022年强化训练冀教版九年级数学下册第三十章二次函数专题练习试题(精选)第1页](http://m.enxinlong.com/img-preview/2/3/12721042/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练冀教版九年级数学下册第三十章二次函数专题练习试题(精选)第2页](http://m.enxinlong.com/img-preview/2/3/12721042/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练冀教版九年级数学下册第三十章二次函数专题练习试题(精选)第3页](http://m.enxinlong.com/img-preview/2/3/12721042/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版九年级下册第30章 二次函数综合与测试练习
展开
这是一份冀教版九年级下册第30章 二次函数综合与测试练习,共24页。试卷主要包含了抛物线的顶点坐标为等内容,欢迎下载使用。
九年级数学下册第三十章二次函数专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、根据表格对应值:x1.11.21.31.4ax2+bx+c﹣0.590.842.293.76判断关于x的方程ax2+bx+c=2的一个解x的范围是( )A.1.1<x<1.2 B.1.2<x<1.3 C.1.3<x<1.4 D.无法判定2、抛物线的对称轴是( )A.直线 B.直线 C.直线 D.直线3、若关于的一元二次方程的两根分别为,,则二次函数的对称轴为直线( )A. B. C. D.4、抛物线的顶点坐标为( )A.(﹣4,﹣5) B.(﹣4,5) C.(4,﹣5) D.(4,5)5、将抛物线向下平移1个单位长度,再向左平移2个单位长度后,得到的抛物线表达式是( )A. B. C. D.6、二次函数y=ax2+bx+c的部分图象如图所示,当x>0时,函数值y的取值范围是( )A. B.y≤2 C.y<2 D.y≤37、在同一坐标系内,函数y=kx2和y=kx﹣2(k≠0)的图象大致如图( )A. B.C. D.8、二次函数的图象如图所示,则下列结论正确的是( )A.,, B.,, C.,, D.,,9、已知二次函数,当时,随的增大而减小,则的取值范围是( )A. B. C. D.10、一次函数与二次函数的图象交点( )A.只有一个 B.恰好有两个C.可以有一个,也可以有两个 D.无交点第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、抛物线与x轴的两个交点之间的距离为4,则t的值是______.2、如果抛物线的顶点在轴上,那么的值是_________.3、如果一条抛物线与轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条拋物线的“特征三角形”.已知的“特征三角形”是等腰直角三角形,那么的值为_________.4、已知抛物线经过点.若点在该抛物线上,且,则n的取值范围为______.5、如果二次函数的图像上有两点(2,y1)和(4,y2),那么y1________y2.(填“>”、“=”或“<”)三、解答题(5小题,每小题10分,共计50分)1、已知二次函数的图象经过点.(1)求二次函数的表达式;(2)求二次函数的图象与轴的交点坐标.2、小君根据学习经验对函数y=|ax2+bx+c|进行了探究.(1)写出该函数自变量的取值范围 ;(2)下列表示y与x的几组对应值.x…﹣1012345…y…50343m5…则m= ;(3)如图,在平面直角坐标系xOy中,描出以上对各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)请根据图象,写出:①当0≤x≤4时,y的最大值是 ;②当z<x<z+1时,y随x的增大而增大,则z的取值范围是 .3、生态水果是指在保护、改善农业生态环境的前提下,遵循生态学、生态经济学规律,运用现代科学技术,营养的、健康的水果.青岛市扶贫工作小组对李沧、胶州、即墨等多地果农进行精准投资建设,帮助果农将一种有机生态水果拓宽了市场,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了.批发销售总额比去年增加了20%(1)已知去年这种水果批发销售总额为10万元,求这种水果今年每千克的平均批发价是多少元?(2)今年某水果店从果农处直接批发,专营这种水果.调查发现,若每千克的平均销售价为41元,则每天可售出300千克;若每千克的平均销售价每降低3元,每天可多卖出180千克.设水果店一天的利润为w元,当每千克的平均销售价为多少元时该水果店一天的利润最大(利润计算时,其它费用忽略不计,并且售价为整数)4、如图,直线AB与抛物线y=x2+bx+c交于点A(﹣4,0),B(2,6),与y轴交于点C,且OA=OC,点D为线段AB上的一点,连结OD,OB.(1)求抛物线的解析式;(2)若OD将△AOB的面积分成1:2的两部分,求点D的坐标;(3)在坐标平面内是否存在点P,使以点A,O,B,P为顶点四边形是平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.5、某公司销售一种商品,成本为每件30元,经过市场调查发现,该商品的日销售量y(件)与销售单价x(元)是一次函数关系,其销售单价、日销售量的三组对应数值如下表:销售单价x(元)406080日销售量y(件)806040(1)求y与x的函数关系式;(2)求公司销售该商品获得的最大日利润. -参考答案-一、单选题1、B【解析】【分析】利用表中数据可知当x=1.3和x=1.2时,代数式ax2+bx+c的值一个大于2,一个小于2,从而判断当1.2<x<1.3时,代数式ax2+bx+c的值为2.【详解】解:当x=1.3时,ax2+bx+c=2.29,当x=1.2时,ax2+bx+c=0.84,∵0.84<2<2.29,∴方程解的范围为1.2<x<1.3,故选:B【点睛】本题考查估算一元二次方程的近似解,解题关键是观察函数值的变化情况.2、C【解析】【分析】抛物线的对称轴为:,根据公式直接计算即可得.【详解】解:,其中:,,,,故选:C.【点睛】本题考查的是抛物线的对称轴,掌握抛物线的对称轴的公式是解本题的关键,注意对称轴是直线.3、C【解析】【分析】根据两根之和公式可以求出对称轴公式.【详解】解:∵一元二次方程ax2+bx+c=0的两个根为−2和4,∴x1+x2=− =2.∴二次函数的对称轴为x=−=×2=1.故选:C.【点睛】本题考查了求二次函数的对称轴,要求熟悉二次函数与一元二次方程的关系和两根之和公式,并熟练运用.4、A【解析】【分析】根据抛物线的顶点坐标为 ,即可求解.【详解】解:抛物线的顶点坐标为. 故选:A【点睛】本题主要考查了二次函数的图象和性质,熟练掌握抛物线的顶点坐标为是解题的关键.5、C【解析】【分析】根据平移的规律:左加右减,上加下减可得函数解析式.【详解】解:因为y=x2-2x+3=(x-1)2+2.所以将抛物线y=(x-1)2+2先向下平移1个单位长度,再向左平移2个单位长度后,得到的抛物线的表达式为y=(x-1+2)2+2-1,即y=(x+1)2+1.故选:C.【点睛】本题主要考查了二次函数图象与几何变换,关键是掌握平移的规律.6、A【解析】【分析】根据待定系数求解析式,进而求得顶点坐标,即的最大值,进而即可求得答案【详解】解:∵二次函数y=ax2+bx+c图象的对称轴为,与轴的交点为,与轴的一个交点为,∴另一交点为设抛物线解析式为,将点代入得解得抛物线解析式为则顶点坐标为当x>0时,函数值y的取值范围是故选A【点睛】本题考查了待定系数法求抛物线解析式,化为顶点式是解题的关键.7、B【解析】【分析】分别利用函数解析式分析图象得出答案.【详解】解:A、二次函数开口向下,k<0;一次函数图象经过第一、三象限,k>0,故此选项错误;B、两函数图象符合题意;C、二次函数开口向上,k>0;一次函数图象经过第二、四象限,k<0,故此选项错误;D、一次函数解析式为:y=kx-2,图象应该与y轴交在负半轴上,故此选项错误.故选:B.【点睛】此题主要考查了二次函数的图象以及一次函数的图象,正确得出k的符号是解题关键.8、D【解析】【分析】首先根据二次函数图象的开口方向确定,再根据对称轴在轴右,可确定与异号,然后再根据二次函数与轴的交点可以确定.【详解】解:抛物线开口向上,,对称轴在轴右侧,与异号,,抛物线与轴交于正半轴,,故选:.【点睛】此题主要考查了二次函数图象与系数的关系,关键是掌握二次函数,①二次项系数决定抛物线的开口方向和大小.当时,抛物线向上开口;当时,抛物线向下开口.②一次项系数和二次项系数共同决定对称轴的位置.当与同号时(即,对称轴在轴左; 当与异号时(即,对称轴在轴右.(简称:左同右异)③.常数项决定抛物线与轴交点. 抛物线与轴交于.9、D【解析】【分析】先求出对称轴x=,再由已知可得 b≥1,即可求b的范围.【详解】解:∵,∴对称轴为直线x=b,开口向下,在对称轴右侧,y随x的增大而减小,∵当x>1时,y随x的增大而减小,∴1不在对称轴左侧,∴b≤1,故选:D.【点睛】本题考查二次函数的图象与系数的关系,熟练掌握二次函数的图象及性质,充分理解对称轴与函数增减性之间的关系是解题的关键.10、B【解析】【分析】联立解析式得一元二次方程,利用判根公式判断方程的根,方程根的个数即为图象的交点个数.【详解】解:联立一次函数和二次函数的解析式可得:整理得:有两个不相等的实数根与的图象交点有两个故选:B.【点睛】本题考查了一元二次方程的根,图象的交点与方程根的关系.解题的关键在于正确求解.二、填空题1、【解析】【分析】设抛物线与x轴的两个交点的横坐标为 则是的两根,且 再利用两个交点之间的距离为4列方程,再解方程可得答案.【详解】解:设抛物线与x轴的两个交点的横坐标为 是的两根,且 两个交点之间的距离为4, 解得: 经检验:是原方程的根且符合题意,故答案为:【点睛】本题考查的是二次函数与轴的交点坐标,两个交点之间的距离,掌握“求解二次函数与轴的交点坐标”是解本题的关键.2、2【解析】【分析】把二次函数一般式转化为顶点式,求出其顶点坐标,再根据顶点在x轴上确定其纵坐标为0,进而求出m的值.【详解】解:∵,∴二次函数顶点坐标为.∵顶点在x轴上,∴,∴m=2.故答案为:2.【点睛】本题考查二次函数的一般式转化为顶点式的方法和坐标轴上点的坐标特征,熟练掌握以上知识点是解题关键.3、2【解析】【分析】首先求出的顶点坐标和与x轴两个交点坐标,然后根据“特征三角形”是等腰直角三角形列方程求解即可.【详解】解:∵∴,代入得:∴抛物线的顶点坐标为∵当时,即,解得:,∴抛物线与x轴两个交点坐标为和∵的“特征三角形”是等腰直角三角形,∴,即解得:.故答案为:2.【点睛】此题考查了二次函数与x轴的交点问题,等腰直角三角形的性质,解题的关键是求出的顶点坐标和与x轴两个交点坐标.4、【解析】【分析】将点代入求出抛物线的解析式,再求出对称轴为直线,开口向上,自变量离对称轴越远,因变量越大即可求解.【详解】解:将代入中得到:,解得,∴抛物线的对称轴为直线,且开口向上,根据“自变量离对称轴越远,其对应的因变量越大”可知,当时,对应的最大为:,当时,对应的最小为:,故n的取值范围为:,故答案为:.【点睛】本题考查二次函数的图像及性质,点在抛物线上,将点的坐标代入即可求解.5、【解析】【分析】将题目所给两个x代入函数即可得出两个y,再比较大小.【详解】=2时:时:∴故答案为:<【点睛】本题考查函数性质,掌握比较方法是关键.三、解答题1、 (1)y=x 2+ x﹣;(2)(0,﹣).【解析】【分析】(1)利用待定系数法,把代入函数解析式即可求;(2)令x=0,求得y的值即可得出结论.(1)解:∵二次函数y=a(x+1)2﹣2的图象经过点(﹣5,6),∴a(﹣5+1)2﹣2=6.解得:a=.∴二次函数的表达式为:y=(x+1)2﹣2,即y=x 2+ x﹣;(2)解:令x=0,则y=×(0+1)2﹣2=﹣,∴二次函数的图象与y轴的交点坐标为(0,﹣).【点睛】本题主要考查了待定系数法确定抛物线的解析式,二次函数图象上点的坐标的特征,利用待定系数法确定函数的解析式是解题的关键.2、 (1)全体实数;(2)0;(3)答案见解析;(4)①4;②z≥4或0≤z≤1【解析】【分析】(1)根据函数解析式为整式,即可得函数自变量的取值范围;(2)观察表格知,函数关于直线x=2对称,从而由对称性即可求得m的值;(3)用光滑的曲线顺次连接各点即得函数图象;(4)①根据图象即可求得y的最大值;②观察图象即可求得z的取值范围.(1)(1)函数y=|ax2+bx+c|的自变量的取值范围为全体实数.故答案为:全体实数.(2)观察表格可知,函数关于直线x=2对称,与x轴交于(0,0)和(4,0),∴x=4时,m=0.故答案为:0.(3)函数图象如图所示:(4)①观察图象可知,当0≤x≤4时,y的最大值是4.故答案为:4.②观察图象可知,当z≥4或0≤z≤1时,y随x的增大而增大.故答案为:z≥4或0≤z≤1.【点睛】本题考查了函数及其图象、二次函数的图象与性质,关键是观察表格,数形结合.3、 (1)24元;(2)当m=35时,w最大=7260元.【解析】【分析】(1)设去年这种水果的批发价为x元/千克,今年的销量-去年的销量=1000列方程解方程即可;(2)设每千克的平均销售价为m元,根据总利润=每千克利润×销量列函数关系式w=(m-24)(300+)配方为顶点式,利用函数性质求即即可.(1)解:设去年这种水果的批发价为x元/千克,根据题意得:,整理得:3000-2400=24x,解得x=25,经检验符合题意,元;(2)解:设每千克的平均销售价为m元,w=(m-24)(300+),=,=,∵a=-60<0,抛物线开口向下,函数有最大值,当m=35时,w最大=7260元.【点睛】本题考查列分式方程解应用题,列二次函数解应用题,掌握列分式方程解应用题的方法与步骤,列二次函数解应用题方法是解题关键.4、 (1)(2)(-2,2)或(0,4)(3)存在,点P的坐标为(-2,6)或(6,6)或(-6,-6).【解析】【分析】(1)根据待定系数法,将A(−4,0)、B(2,6)代入,计算即可;(2)先确定点A点C坐标,再运用待定系数法先求出直线AB的解析式,设点D的坐标为(m,m+4),然后根据OD将△AOB的面积分成1:2的两部分计算即可;(3)设点P的坐标为(xp,yp),分3种情况分析解答即可.(1)解:将A(−4,0)、B(2,6)代入可得:,解得:,∴抛物线的解析式为:;(2)解:∵ A点坐标为(-4,0),OA=OC∴C点坐标为(0,4)设直线AB的解析式为:,则,解得:,∴直线AB的解析式为:,设点D的坐标为(m,m+4),∵OD将△AOB的面积分成1:2的两部,即或,∴或,解得:或m=0∴点D的坐标为(-2,2)或(0,4);(3)解:存在;设点P的坐标为(xp,yp),①当四边形AOBP是平行四边形时,p1在第二象限时,轴,,∵B(2,6),∴点P的坐标为(-2,6);②当四边形AOPB是平行四边形时,p2在第一象限时,点P的横坐标为2+4=6,点P的,纵坐标坐标为6,点P的坐标为(6,6);③当四边形APOB是平行四边形时,p3在第三象限时,,,∴,,即,,解得:,,此时点P的坐标为(-6,-6);综上,存在满足条件的点P的坐标为(-2,6)或(6,6)或(-6,-6).【点睛】本题属于二次函数与一次函数综合题,主要考查了运用待定系数法求解析式、三角形面积、平行四边形等知识点,正确求出二次函数、一次函数的解析式并掌握分类讨论思想成为解答本题的关键.5、 (1)y=-x+120;(2)最大日利润是2025元.【解析】【分析】(1)根据题中所给的表格中的数据,利用待定系数法可得其关系式,也可以根据关系直接写出关系式;(2)根据利润等于每件的利润乘以件数,再利用配方法求得其最值.(1)解:设解析式为y=kx+b,将(40,80)和(60,60)代入,可得,解得:,所以y与x的关系式为y=-x+120;(2)解:设公司销售该商品获得的日利润为w元,w=(x-30)y=(x-30)(-x+120)=-x2+150x-3600=-(x-75)2+2025,∵x-30≥0,-x+120≥0,∴30≤x≤120,∵-1<0,∴抛物线开口向下,函数有最大值,∴当x=75时,w最大=2025,答:当销售单价是75元时,最大日利润是2025元.【点睛】本题考查的是有关函数的问题,涉及到的知识点有一次函数解析式的求解,二次函数的应用,在解题的过程中,注意正确找出等量关系是解题的关键,属于基础题目.
相关试卷
这是一份数学九年级下册第30章 二次函数综合与测试一课一练,共29页。试卷主要包含了抛物线的对称轴是,同一直角坐标系中,函数和等内容,欢迎下载使用。
这是一份2020-2021学年第30章 二次函数综合与测试当堂检测题,共32页。试卷主要包含了二次函数的最大值是,若点A,抛物线的顶点为等内容,欢迎下载使用。
这是一份初中数学第30章 二次函数综合与测试当堂达标检测题,共30页。试卷主要包含了同一直角坐标系中,函数和等内容,欢迎下载使用。
![英语朗读宝](http://m.enxinlong.com/img/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)