初中数学冀教版七年级下册第七章 相交线与平行线综合与测试同步测试题
展开这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试同步测试题,共19页。试卷主要包含了如图,点P是直线m外一点,A等内容,欢迎下载使用。
冀教版七年级下册第七章相交线与平行线专题攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、有下列说法:①两条不相交的直线叫平行线;②同一平面内,过一点有且只有一条直线与已知直线垂直;③两条直线相交所成的四个角中,如果有两个角相等,那么这两条直线互相垂直;④有公共顶点的两个角是对顶角.其中说法正确的个数是( )
A.1 B.2 C.3 D.4
2、如图,已知直线,相交于O,平分,,则的度数是( )
A. B. C. D.
3、如图,已知直线AD∥BC,BE平分∠ABC交直线DA于点E,若∠DAB=54°,则∠E等于( )
A.25° B.27° C.29° D.45°
4、一把直尺与一块直角三角板按下图方式摆放,若,则( )
A.52° B.53° C.54° D.63°
5、把直线a沿水平方向平移4cm,平移后的线为直线b,则直线a与直线b之间的距离为( )
A.等于4cm B.小于4cm
C.大于4cm D.不大于4cm
6、如图,直尺的一条边经过直角三角尺的直角顶点且平分直角,它的对边恰巧经过60°角的顶点.则∠1的大小是( )
A.30° B.45° C.60° D.75°
7、一把直尺与一块直角三角板按如图方式摆放,若∠1=28°,则∠2=( )
A.62° B.58° C.52° D.48°
8、如图,某位同学将一副三角板随意摆放在桌上,则图中的度数是( )
A.70° B.80° C.90° D.100°
9、如图,点P是直线m外一点,A、B、C三点在直线m上,PB⊥AC于点B,那么点P到直线m的距离是线段( )的长度.
A.PA B.PB C.PC D.AB
10、如图,小华同学用剪刀沿直线将一片平整的长方形纸片剪掉一部分,发现剩下纸片的周长比原纸片的周长要小( )
A.垂线段最短
B.经过一点有无数条直线
C.经过两点,有且仅有一条直线
D.两点之间,线段最短
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,已知AB∥CD,∠ABC=120°,∠1=27°,则直线CB和CE的夹角是_____°.
2、如图,将一副三角板按如图所示的方式摆放,AC∥DF,BC与EF相交于点G,则∠CGF度数为 _____度.
3、如图,直线a∥b,A是直线a上的任意一点,AB⊥b,B是垂足,线段________的长就是a、b之间的距离.
4、同一平面内,两条直线相交有__________个交点,两条直线相交的特殊位置关系是__________.
5、下列命题,①对顶角相等;②两直线平行,同位角相等;③平行四边形的对角相等.其中逆命题是真命题的命题共有__个.
三、解答题(5小题,每小题10分,共计50分)
1、按要求画图,并回答问题:
如图,平面内有三个点A,B,C.
根据下列语句画图:
(1)画直线AB;
(2)射线BC;
(3)延长线段AC到点D,使得;
(4)通过画图、测量,点B到点D的距离约为______cm(精确到0.1);
(5)通过画图、测量,点D到直线AB的最短距离约为______cm(精确到0.1).
2、如图,在中,平分交于D,平分交于F,已知,求证:.
3、如图,直线AB、CD相交于点O,OE平分∠BOD,且.求∠AOC和∠DOE的度数.
4、如图,已知AB∥CD,AD和BC交于点O,E为OC上一点,F为CD上一点,且∠CEF+∠BOD=180°.说明∠EFC=∠A的理由.
5、按照下列要求完成作图及相应的问题解答
(1)作出∠AOB的角平分线OM;
(2)作直线,不能与直线OB相交,且交射线OM于点M;
(3)通过画图和测量,判断线段OP与线段PM的数量关系.
-参考答案-
一、单选题
1、A
【解析】
【分析】
根据平行线的定义、垂直的定义及垂线的唯一性、对顶角的含义即可判断.
【详解】
同一平面内不相交的两条直线叫做平行线,故说法①错误;说法②正确;两条直线相交所成的四个角中,如果有一个角是直角,那么这两条直线互相垂直,当这两个相等的角是对顶角时则不垂直,故说法③错误;根据对顶角的定义知,说法④错误;故正确的说法有1个;
故选:A
【点睛】
本题考查了两条直线的位置关系中的相关概念及性质,掌握这些概念是关键.
2、C
【解析】
【分析】
先根据角平分线的定义求得∠AOC的度数,再根据邻补角求得∠BOC的度数即可.
【详解】
解:∵OA平分∠EOC,∠EOC=100°,
∴∠AOC=∠EOC=50°,
∴∠BOC=180°﹣∠AOC=130°.
故选:C.
【点睛】
本题考查角平分线的有关计算,邻补角.能正确识图是解题关键.
3、B
【解析】
【分析】
根据两直线平行,内错角相等可求∠ABC=54°,再根据角平分线的性质可求∠EBC=27°,再根据两直线平行,内错角相等可求∠E.
【详解】
解:∵AD∥BC,
∴∠ABC=∠DAB=54°,∠EBC=∠E,
∵BE平分∠ABC,
∴∠EBC=∠ABC=27°,
∴∠E=27°.
故选:B.
【点睛】
本题考查了平行线的性质,角平分线,关键是求出∠EBC=27°.
4、B
【解析】
【分析】
过三角板的直角顶点作直尺两边的平行线,根据平行线的性质(两直线平行,同位角相等)即可求解.
【详解】
解:如图,过三角板的直角顶点作直尺两边的平行线,
∵直尺的两边互相平行,
∴,,
∴,
∴,
故选B.
【点睛】
本题主要考查了平行线的性质,掌握平行线的性质是解题的关键.
5、D
【解析】
【分析】
根据平行线间的距离的定义解答即可.
【详解】
解:分两种情况:
如果直线a与水平方向垂直,则直线a与b之间的距离为4cm,
若果直线a与水平方向不垂直, 则直线a与b之间的距离小于4cm
直线a与直线b之间的距离不大于4cm.
故选D.
【点睛】
本题主要考查了直线的平移和平行线之间的距离, 平行线之间的距离是指从一条平行线上的任意一点到另一条平行线作垂线,垂线段的长度叫两平行线间的距离.另外,掌握分类讨论思想是正确解答本题关键.
6、D
【解析】
【分析】
由AC平分∠BAD,∠BAD=90°,得到∠BAC=45°,再由BD∥AC,得到∠ABD=∠BAC=45°,∠1+∠CBD=180°,由此求解即可.
【详解】
解:∵AC平分∠BAD,∠BAD=90°,
∴∠BAC=45°
∵BD∥AC,
∴∠ABD=∠BAC=45°,∠1+∠CBD=180°,
∵∠CBD=∠ABD+∠ABC=45°+60°=105°,
∴∠1=75°,
故选D.
【点睛】
本题主要考查了平行线的性质和角平分线的定义,解题的关键在于能够熟练掌握平行线的性质.
7、A
【解析】
【分析】
过三角板的直角顶点作直尺两边的平行线,根据平行线的性质(两直线平行,同位角相等)即可求解.
【详解】
解:如图,过三角板的直角顶点作直尺两边的平行线,
∵直尺的两边互相平行,
∴,
∴,
∴,
故选:A.
【点睛】
本题考查平行线的性质,掌握平行线的性质是解题的关键.
8、C
【解析】
【分析】
如图(见解析),过点作,先根据平行线的性质可得,再根据角的和差即可得.
【详解】
解:如图,过点作,
,
,
,
,
故选:C.
【点睛】
本题考查了平行线的性质,熟练掌握平行线的性质是解题关键.
9、B
【解析】
【分析】
根据点到直线的距离的定义解答即可.
【详解】
解:∵PB⊥AC于点B,
∴点P到直线m的距离是线段B的长度.
故选:B.
【点睛】
本题主要考查了点到直线的距离的定义,从直线外一点到这条直线的垂线段长度叫点到直线的距离.
10、D
【解析】
【分析】
根据两点之间,线段最短解答即可.
【详解】
解:用剪刀沿虚线将一片平整的长方形纸片剪掉一部分,发现剩下纸片的周长比原纸片的周长要小,能正确解释这一现象的数学知识是两点之间线段最短.
故选:D.
【点睛】
本题考查的是线段的性质,掌握两点之间,线段最短是解题的关键.
二、填空题
1、93
【解析】
【分析】
AB∥CD,∠DCB=∠ABC=120°,将角度代入∠BCE=∠DCB -∠1求解即可.
【详解】
解:∵AB∥CD
∴∠DCB=∠ABC=120°
又∵∠1=27°
∴∠BCE=∠DCB -∠1=93°
故答案为93.
【点睛】
本题考查了平行线中关于内错角的性质.解题的关键在于熟练使用两直线平行,内错角相等的性质.
2、30
【解析】
【分析】
先证明再证明再利用平行线的性质与对顶角的性质可得答案.
【详解】
解:如图,记交于点
由题意得:
故答案为:
【点睛】
本题考查的是平行线的判定与性质,掌握“两直线平行,同位角相等与同旁内角互补,两直线平行”是解本题的关键.
3、AB
【解析】
略
4、 1 垂直
【解析】
略
5、
【解析】
【分析】
先根据互逆命题写出三个命题的逆命题,然后分别根据对顶角的定义、平行四边形的判定定理和平行线的判定定理进行判断.
【详解】
解:对顶角相等的逆命题为相等的角为对顶角,此逆命题为假命题;
两直线平行,同位角相等的逆命题为同位角相等,两直线平行,此逆命题为真命题;
平行四边形的对角相等的逆命题为对角相等的四边形是平行四边形,此逆命题为假命题.
故答案为:1.
【点睛】
本题考查了命题与命题:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果那么”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.
三、解答题
1、(1)见解析;(2)见解析;(3)见解析;(4)3.5;(5)1.4
【解析】
【分析】
(1)根据直线定义即可画直线AB;
(2)根据射线定义即可画直线BC;
(3)根据线段定义即可连接AC并延长到点D,使得CD=AC;
(4)通过画图、测量,即可得点B到点D的距离.
(5)通过画图、测量,即可得点D到直线AB的距离.
【详解】
解:(1)如图,直线AB即为所求;
(2)如图,射线BC即为所求;
(3)如图,线段CD即为所画;
(4)通过画图、测量,点B到点D的距离约为3.5cm,
故答案为:3.5;
(5)通过画图、测量,点D到点AB的距离DE约为1.4cm
故答案为:1.4
【点睛】
本题考查了基本作图、直线是向两方无限延伸的,射线是向一方无限延伸的;线段有两个端点、两点间的距离,点到直线间的距离,解决本题的关键是准确作图.
2、见解析
【解析】
【分析】
根据∠ADE=∠B可判定DE∥BC,根据平行线的性质得到∠ACB=∠AED,再根据角平分线的定义推出∠ACD=∠AEF,即可判定EF∥CD.
【详解】
证明:(已知),
(同位角相等,两直线平行),
(两直线平行,同位角相等),
平分,平分(已知),
,(角平分线的定义),
(等量代换).
(同位角相等,两直线平行).
【点睛】
此题考查了平行线的判定与性质,以及角平分线的定义,熟练掌握平行线的判定与性质是解题的关键.
3、50°,25°.
【解析】
【分析】
根据邻补角的性质,可得∠AOD+∠BOD=180°,即,代入可得∠BOD,根据对顶角的性质,可得∠∠AOC的度数,根据角平分线的性质,可得∠DOE的数.
【详解】
解:由邻补角的性质,得∠AOD+∠BOD=180°,即
∵,
∴.
∴,
∴∠AOC=∠BOD=50°,
∵OE平分∠BOD,得
∠DOE=∠DOB=25°.
【点睛】
本题考查了角平分线的定义,对顶角、邻补角的性质,解题关键是熟记相关性质,根据角之间的关系建立方程求解.
4、见解析
【解析】
【分析】
由AB∥DC可得到∠A与∠D的关系,再由∠CEF+∠BOD=180°可得到∠CEF=∠COD,根据平行线的判定定理可得EF∥AD,可得∠D与∠EFC的关系,等量代换可得结论.
【详解】
证明:∵AB∥CD,
∴∠A=∠D,
∵∠CEF+∠BOD=180°,∠BOD+∠DOC=180°,
∴∠CEF=∠DOC.
∴EF∥AD.
∴∠EFC=∠D,
∵∠A=∠D,
∴∠EFC=∠A.
【点睛】
本题考查了平行线的判定和性质,掌握平行线的性质和判定方法是解决本题的关键.
5、 (1)见解析
(2)见解析
(3)OP=PM
【解析】
【分析】
(1)在∠AOB内部作射线OM,满足∠AOM=∠BOM即可;
(2)作即可;
(3)分别测量OP及PM,即可得到两条线段的数量关系.
(1)
解:如图,是所画的角平分线,
(2)
解:如图,直线即为所画的直线,
(3)
解:经测量得OP=2.6cm,PM=2.6cm,
∴OP=PM.
【点睛】
此题考查了作角的平分线,平行线的作图,测量法比较两条线段的大小关系,正确作出角的平分线及线段的平行线是解题的关键.
相关试卷
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试同步测试题,共21页。试卷主要包含了下列命题中是假命题的是,下列说法正确的有,如图所示,直线l1∥l2,点A,以下命题是假命题的是等内容,欢迎下载使用。
这是一份数学七年级下册第七章 相交线与平行线综合与测试习题,共23页。试卷主要包含了下列语句正确的个数是,如图,点A,有下列说法等内容,欢迎下载使用。
这是一份数学第七章 相交线与平行线综合与测试习题,共23页。试卷主要包含了下列语句正确的个数是,如图,下列条件中不能判定的是等内容,欢迎下载使用。