搜索
    上传资料 赚现金
    英语朗读宝

    2022年精品解析沪教版七年级数学第二学期第十五章平面直角坐标系章节训练试题

    2022年精品解析沪教版七年级数学第二学期第十五章平面直角坐标系章节训练试题第1页
    2022年精品解析沪教版七年级数学第二学期第十五章平面直角坐标系章节训练试题第2页
    2022年精品解析沪教版七年级数学第二学期第十五章平面直角坐标系章节训练试题第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课时练习

    展开

    这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课时练习,共29页。试卷主要包含了如果点P,点在,若平面直角坐标系中的两点A,平面直角坐标系内一点P等内容,欢迎下载使用。
    七年级数学第二学期第十五章平面直角坐标系章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,直角坐标平面xOy内,动点P按图中箭头所示方向依次运动,第1次从点(﹣1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,﹣2),…按这样的运动规律,动点P第2021次运动到点(    A.(2020,﹣2) B.(2020,1) C.(2021,1) D.(2021,﹣2)2、在平面直角坐标系中,点关于x轴对称的点的坐标是(    A. B. C. D.3、点向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为(    A. B. C. D.4、在平面直角坐标系中,点P的位置如图所示,则点P的坐标可能是(    A.(4,2) B.(﹣4,2) C.(﹣4,﹣2) D.(2,4)5、如果点P(﹣2,b)和点Qa,﹣3)关于x轴对称,则a+b=(  )A.﹣1 B.1 C.﹣5 D.56、点在(    A.第一象限 B.第二象限 C.第三象限 D.第四象限7、在平面直角坐标系中,将点(3,-4)平移到点(-1,4),经过的平移变换为(    A.先向左平移4个单位长度,再向上平移4个单位长度B.先向左平移4个单位长度,再向上平移8个单位长度C.先向右平移4个单位长度,再向下平移4个单位长度D.先向右平移4个单位长度,再向下平移8个单位长度8、若平面直角坐标系中的两点Aa,3),B(1,b)关于y轴对称,则ab的值是(  A.2 B.-2 C.4 D.-49、平面直角坐标系内一点P(﹣3,2)关于原点对称的点的坐标是(  )A.(2,﹣3) B.(3,﹣2) C.(﹣2,﹣3) D.(2,3)10、如图,在平面直角坐标系中,已知“蝴蝶”上有两点,将该“蝴蝶”经过平移后点的对应点为,则点的对应点的坐标为(    A. B. C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,点A(-2,4)与点关于轴对称,则点的坐标为________.2、已知点Aa,﹣3)是点B(﹣2,b)关于原点O的对称点,则a+b=_____.3、已知点P)在x轴上,则_____.4、在平面直角坐标系中,点A的坐标为(a,3),点B的坐标是(4,b),若点A与点B关于原点O对称,则ab=________.5、在平面直角坐标系中,若点P关于x轴的对称点Q的坐标是(﹣3,2),则点P关于y轴的对称点R的坐标是_____.三、解答题(10小题,每小题5分,共计50分)1、如图所示的方格纸中每个小方格都是边长为1个单位的正方形,建立如图所示的平面直角坐标系.(1)请写出△ABC各点的坐标A         B         C          (2)若把△ABC向上平移2个单位,再向右平移2个单位得,在图中画出(3)求△ABC 的面积2、如图,在平面直角坐标系中,已知△ABC(1)将△ABC向下平移6个单位,得,画出(2)画出△ABC关于y轴的对称图形(3)连接,并直接写出△A1A2C2的面积.3、如图,正方形网格中,每一个小正方形的边长都是1个单位长度,在平面直角坐标系内,ABC的三个顶点坐标分别为A(1,1),B(3,2),C(2,4).(1)画出ABC关于原点O对称的,直接写出点的坐标;(2)画出ABC绕点O逆时针旋转90°后的,并写出点的坐标.4、在平面直角坐标系xOy中,直线lxm表示经过点(m,0),且平行于y轴的直线.给出如下定义:将点P关于x轴的对称点,称为点P的一次反射点;将点关于直线l的对称点,称为点P关于直线l的二次反射点.例如,如图,点M(3,2)的一次反射点为(3,-2),点M关于直线lx=1的二次反射点为(-1,-2).已知点A(-1,-1),B(-3,1),C(3,3),D(1,-1).(1)点A的一次反射点为            ,点A关于直线x=2的二次反射点为            (2)点B是点A关于直线xa的二次反射点,则a的值为            (3)设点ABC关于直线xt的二次反射点分别为,若△与△BCD无公共点,求t的取值范围.5、在由边长为1个单位长度的小正方形组成的网格中建立如图所示平面直角坐标系,原点OABC的顶点都在格点上.(1)在图中作出DEF,使得DEEABC关于x轴对称;(2)写出DE两点的坐标:D      E      (3)求DEF的面积.6、如图,在所给网格图(每小格边长均为1的正方形)中完成下列各题:(1)△ABC的面积为     (2)画出格点△ABC(顶点均在格点上)关于x轴对称的△A1B1C1(3)在y轴上画出点Q,使QAQC最小.(保留画的痕迹)7、如图,在平面直角坐标系中,△ABC的两个顶点ABx轴上,顶点Cy轴上,且∠ACB=90°.(1)图中与∠ABC相等的角是    (2)若AC=3,BC=4,AB=5,求点C的坐标.8、如图,在平面直角坐标系中,的三个顶点都在格点上,点的坐标为,请回答下列问题.(1)画出关于x轴对称的,并写出点的坐标(___,___)(2)点Px轴上一点,当的长最小时,点P坐标为______;(3)点M是直线BC上一点,则AM的最小值为______.9、如图,在平面直角坐标系中有一个△ABC,顶点A(-1,3),B(2,0),C(-3,-1).(1)画出△ABC关于y轴的对称图形△A1B1C1(不写画法);点A关于x轴对称的点坐标为_______;点B关于y轴对称的点坐标为_______;(2)若网格上的每个小正方形的边长为1,则△ABC的面积是_______.10、在如图所示的正方形网格中建立平面直角坐标系,的顶点坐标分别为,请按要求解答下列问题:(1)画出关于x轴对称的,并写出点A的对应点的坐标为(              );(2)平行于y轴的直线l经过,画出关于直线l对称的图形,并直接写出              ),              ),              );(3)仅用无刻度直尺作出的角平分线BD,保留画图痕迹(不写画法). -参考答案-一、单选题1、B【分析】观察图形可知,每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2021除以4,然后根据商和余数的情况确定运动后点的坐标即可.【详解】解:点的运动规律是每运动四次向右平移四个单位,动点第2021次运动时向右个单位,此时坐标为故选:B.【点睛】本题主要考查平面直角坐标系下的规律探究题,解答时注意探究动点的运动规律,又要注意动点的坐标的象限符号.2、C【分析】根据若两点关于 轴对称,横坐标不变,纵坐标互为相反数,即可求解【详解】解:点关于x轴对称的点的坐标是 故选:C【点睛】本题主要考查了平面直角坐标系内点关于坐标轴对称的特征,熟练掌握若两点关于 轴对称,横坐标不变,纵坐标互为相反数;若两点关于y轴对称,横坐标互为相反数,纵坐标不变是解题的关键.3、C【分析】利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.【详解】解:点A的坐标为(3,5),将点A向上平移4个单位,再向左平移3个单位到点B,点B的横坐标是:33=6,纵坐标为:5+4=1,即(6,1).故选:C.【点睛】本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减、右加;上下移动改变点的纵坐标,下减、上加.4、A【分析】根据点在第一象限,结合第一象限点的横纵坐标都为正的进而即可判断【详解】解:由题意可知,点P在第一象限,且横坐标大于纵坐标,A.(4,2)在第一象限,且横坐标大于纵坐标,故本选项符合题意;B.(﹣4,2)在第二象限,故本选项符合题意;C.(﹣4,﹣2)在第三象限,故本选项符合题意;D.(2,4)在第一象限,但横坐标小于纵坐标,故本选项符合题意;故选:A.【点睛】本题考查了各象限点的坐标特征,掌握各象限点的坐标特征是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0.5、B【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,求出ab的值,再计算a+b的值.【详解】解:∵点P(﹣2,b)和点Qa,﹣3),又∵关于x轴对称的点,横坐标相同,纵坐标互为相反数,a=﹣2,b=3.a+b=1,故选:B.【点睛】本题主要考查了关于x轴对称点的性质,点Pxy)关于x轴的对称点P′的坐标是(x,-y),正确记忆横纵坐标的关系是解题关键.6、C【分析】根据各象限内点的坐标特征解答.【详解】解:点的横坐标小于0,纵坐标小于0,点所在的象限是第三象限.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).7、B【分析】利用平移中点的变化规律求解即可.【详解】解:∵在平面直角坐标系中,点(3,-4)的坐标变为(-1,4),∴点的横坐标减少4,纵坐标增加8,∴先向左平移4个单位长度,再向上平移8个单位长度.故选:B.【点睛】本题考查了坐标与图形变化-平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.8、A【分析】直接利用关于y轴对称点的性质,横坐标互为相反数,纵坐标相同,进而得出答案.【详解】解:依题意可得a=-1,b=3ab=2故选A【点睛】此题主要考查了关于y轴对称点的性质,正确掌握横纵坐标的符号关系是解题关键.9、B【分析】根据两个点关于原点对称时,它们的坐标符号相反,即点Pxy)关于原点O的对称点是P(﹣x,﹣y),进而得出答案.【详解】解答:解:点P(﹣3,2)关于原点对称的点的坐标是:(3,﹣2).故选:B【点睛】此题主要考查了关于原点对称点的坐标性质,正确记忆横纵坐标的关系是解题关键.10、D【分析】先根据与点对应,求出平移规律,再利用平移特征求出点B′坐标即可【详解】解:∵与点对应,∴平移1-3=-2,3-7=-4,先向下平移4个单位,再向左平移2个单位,∵点B(7,7),∴点B′(7-2,7-4)即如图所示 故选:D.【点睛】本题考查图形与坐标,点的平移特征,掌握点的平移特征是解题关键.二、填空题1、【分析】根据“关于轴对称的点,纵坐标相同,横坐标互为相反数”解答即可.【详解】解:点关于轴对称点的坐标为故答案为:【点睛】本题考查了关于轴、轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.2、5【分析】根据关于原点对称的点的特点可得ab的值,相加即可.【详解】解:∵点Aa,﹣3)是点B(﹣2,b)关于原点O的对称点,a=2,b=3,a+b=5.故答案为5.【点睛】本题考查了关于原点对称的点的特点,掌握“关于原点对称的两个点,横坐标、纵坐标分别互为相反数”是解题的关键.3、【分析】根据x轴上点的纵坐标为0求解即可.【详解】解:∵点Px轴上,a-3=0,即a=3,故答案为:3.【点睛】本题主要考查了点的坐标,解题的关键是掌握平面直角坐标系内各象限、坐标轴上点的坐标符号特点.4、-1【分析】直接利用关于原点对称点的性质得出ab的值,进而得出答案.【详解】解:∵点A的坐标为(a,3),点B的坐标是(4,b),点A与点B关于原点O对称,a=﹣4,b=-3,ab=-4+3=-1.故答案为:﹣1.【点睛】此题主要考查了关于原点对称点的性质,正确得出ab的值是解题关键.5、【分析】根据题意直接利用关于x轴、y轴对称点的性质进行分析即可得出答案.【详解】解:∵点P关于x轴的对称点Q的坐标是(﹣3,2),∴点P的坐标为(﹣3,﹣2),∴点P关于y轴的对称点R的坐标是(3,﹣2),故答案为:(3,﹣2).【点睛】本题主要考查关于x轴、y轴对称点的性质,正确掌握横、纵坐标的关系是解题的关键.三、解答题1、(1);(2)见解析;(3)7【分析】(1)根据平面直角坐标系直接写出点的坐标即可;(2)分别将点的横坐标和纵坐标都加2得到,并顺次连接,则即为所求(3)根据长方形减去三个三角形的面积即可求得△ABC 的面积【详解】(1)根据平面直角坐标系可得故答案为:(2)如图所示,分别将点的横坐标和纵坐标都加2得到,并顺次连接,则即为所求(3)的面积等于【点睛】本题考查了坐标与图形,平移作图,掌握平移的性质是解题的关键.2、(1)见解析;(2)见解析;(3)见解析,7【分析】(1)依据平移的方向和距离,即可得到(2)依据轴对称的性质,即可得到(3)依据割补法进行计算,即可得到△A1A2C2的面积.【详解】(1)如图所示,即为所求;(2)如图所示,即为所求;(3)如图所示,△A1A2C2即为所求作的三角形,A1A2C2的面积=3×6-×2×3-×2×6-×1×4=18-3-6-2=7.【点睛】本题考查作图−平移变换,轴对称变换,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.3、(1)作图见解析,(-1,﹣1);(2)作图见解析,(-1, 1),(-2, 3),(-4, 2);【分析】(1)根据A(1,1),B(3,2),C(2,4).即可画出△ABC关于原点O对称的的△A1B1C1,进而可以写出点A1的坐标;(2)根据旋转的性质即可画出△ABC绕点O逆时针旋转90°后的△A2B2C2;进而可以写出点的坐标即可.【详解】解:(1)如图,△A1B1C1即为所求, 所以点A1的坐标为:(-1,﹣1);(2)△A2B2C2即为所求;的坐标分别为:(-1, 1),(-2, 3),(-4, 2);【点睛】本题考查了作图﹣旋转变换和中心对称变换,解决本题的关键是掌握旋转的性质.4、(1)(-1,1);(5,1);(2)-2;(3)<-2或>1.【分析】(1)根据一次反射点和二次反射点的定义求解即可;(2)根据二次反射点的意义求解即可;(3)根据题意得,分<0和>0时△与△BCD无公共点,求出t的取值范围即可.【详解】解:(1)根据一次反射点的定义可知,A(-1,-1)一次反射点为(-1,1),A关于直线x=2的二次反射点为(5,1)故答案为: (-1,1);(5,1).  (2)∵A(-1,-1),B(-3,1),且点B是点A关于直线xa的二次反射点, 解得, 故答案为: -2. (3)由题意得,(-1,1),(-3,-1),(3,-3),点D(1,-1)在线段上.<0时,只需关于直线的对称点在点B左侧即可,如图1.∵当与点B重合时,=-2,∴当<-2时,△与△BCD无公共点.>0时,只需点D关于直线x的二次反射点在点D右侧即可,如图2,∵当与点D重合时,=1,∴当>1时,△与△BCD无公共点.综上,若△与△BCD无公共点,的取值范围是<-2,或>1.【点睛】本题考查了轴对称性质,动点问题,新定义二次反射点的理解和运用;解题关键是对新定义二次反射点的正确理解.5、(1)见解析;(2)(﹣1,﹣4),(﹣4,1);(3)9.5【分析】(1)先找出点ABC关于x轴的对称点,然后依次连接即可得; (2)根据△DEF的位置,即可得出DE两点的坐标;(3)依据割补法进行计算,使用长方形面积减去三个三角形面积即可得到△DEF的面积.【详解】解:(1)如图所示,△DEF即为所求;(2)由图可得,D(﹣1,﹣4),E(﹣4,1);故答案为:(﹣1,﹣4),(﹣4,1);(3)面积为9.5.【点睛】题目主要考查作轴对称图形,点在坐标系中的位置及利用割补法求三角形面积,熟练掌握轴对称图形的作法是解题关键.6、(1)5;(2)见解析;(3)见解析【分析】(1)利用“补全矩形法”求解△ABC的面积;(2)找到ABC三点关于x轴的对称点,顺次连接可得△A1B1C1(3)作点A关于y轴的对称点A',连接A'C,则A'Cy轴的交点即是点Q的位置.【详解】解:(1)如图所示:SABC=3×4-×2×2-×2×3-×4×1=5.(2)如图所示:(3)如图所示:【点睛】本题考查了轴对称作图及最短路径的知识,难度一般,解答本题注意“补全矩形法”求解格点三角形面积的应用.7、(1)∠ACO;(2)点C的坐标为(0,).【分析】(1)由同角的余角相等,可得到∠ABC=ACO(2)利用面积法可求得CO的长,进而得到点C的坐标.【详解】解:(1)∵OCAB,∠ACB=90°.∴∠ABC+BCO=ACO+BCO=90°,∴∠ABC=ACO故答案为:∠ACO(2)∵AC=3,BC=4,AB=5,∴三角形ABC是直角三角形,∠ACB=90°ABCO=ACBC,即CO==∴点C的坐标为(0,).【点睛】本题考查了同角的余角相等,面积法求线段的长,坐标与图形,解题的关键是灵活运用所学知识解决问题.8、(1)5,-3;(2)(,0);(3)【分析】(1)利用关于x轴对称的点的坐标特征写出A1B1C1的坐标,然后描点即可;(2)连接BC1x轴于点P,利用两点之间线段最短可判断P点满足条件,利用待定系数法求得直线BC1的解析式,即可求解;(3)利用割补法求得△ABC的面积,利用两点之间的距离公式求得BC的长,再利用面积法即可求解.【详解】解:(1)如图,△A1B1C1为所作,点C1的坐标为(5,-3);故答案为:5,-3;(2)如图,点P为所作.设直线BC1的解析式为y=kx+b∵点C1的坐标为(5,-3),点B的坐标为(1,2),,解得:∴直线BC1的解析式为y=x+y=0时,x=∴点P的坐标为(,0);故答案为:(,0);(3)根据垂线段最短,当AM垂直BC时,垂线段AM取得最小值,ABC的面积为2×4-×2×1-×4×1-×3×1=BC=××AM=AM=故答案为:【点睛】本题考查了作图-轴对称变换:几何图形都可看作是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.也考查了最短路径问题.注意:关于x轴对称的点,横坐标相同,纵坐标互为相反数.9、(1)图见解析,(-1,-3),(-2,0);(2)9【分析】(1)根据题意直接利用关于坐标轴对称点的性质得出各对应点位置即可;(2)由题意利用△ABC所在矩形面积减去周围三角形面积进行计算进而得出答案.【详解】解:(1)如图,△A1B1C1即为所作,A关于x轴对称的点坐标为 (-1,-3);B关于y轴对称的点坐标为:(-2,0);故答案为:(-1,-3),(-2,0);(2)△ABC的面积是:4×5-×2×4-×3×3-×1×5=9.故答案为:9.【点睛】本题主要考查轴对称变换以及求三角形面积-补全法,根据题意得出对应点位置是解题的关键.10、(1)图见解析,;(2)图见解析,;(3)见解析【分析】(1)利用关于x轴对称的点的坐标特征得到的坐标,然后描点即可;(2)根据网格特点和对称的性质,分别作出ABC关于直线l的对称点,然后写出它们的坐标;(3)把ABA点逆时针旋转90°得到AE,连接BEACD【详解】解:(1)如图,为所作,(2)如图,为所作,(3)如图,BD为所作. 【点睛】本题考查了平面直角坐标系中点的坐标,画轴对称图形,解题的关键是正确写出点的坐标. 

    相关试卷

    沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课后测评:

    这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课后测评,共26页。试卷主要包含了点A的坐标为,则点A在,在平面直角坐标系中,点P,点P在第二象限内,P点到x,已知点A等内容,欢迎下载使用。

    初中沪教版 (五四制)第十五章 平面直角坐标系综合与测试课时训练:

    这是一份初中沪教版 (五四制)第十五章 平面直角坐标系综合与测试课时训练,共28页。试卷主要包含了点在第四象限,则点在第几象限,已知点A等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课时训练:

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课时训练,共29页。试卷主要包含了点P关于原点O的对称点的坐标是,如图,A,点在第四象限,则点在第几象限等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map