开学活动
搜索
    上传资料 赚现金

    2022年强化训练沪教版七年级数学第二学期第十五章平面直角坐标系章节测评练习题

    2022年强化训练沪教版七年级数学第二学期第十五章平面直角坐标系章节测评练习题第1页
    2022年强化训练沪教版七年级数学第二学期第十五章平面直角坐标系章节测评练习题第2页
    2022年强化训练沪教版七年级数学第二学期第十五章平面直角坐标系章节测评练习题第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步达标检测题

    展开

    这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步达标检测题,共29页。试卷主要包含了已知A,在平面直角坐标系xOy中,点A,已知点A象限等内容,欢迎下载使用。
    七年级数学第二学期第十五章平面直角坐标系章节测评
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、已知点M(m,﹣1)与点N(3,n)关于原点对称,则m+n的值为(  )
    A.3 B.2 C.﹣2 D.﹣3
    2、在平面直角坐标系中,若点与点关于原点对称,则点在( )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    3、若点在第三象限,则点在( ).
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    4、已知A(3,﹣2),B(1,0),把线段AB平移至线段CD,其中点A、B分别对应点C、D,若C(5,x),D(y,0),则x+y的值是( )
    A.﹣1 B.0 C.1 D.2
    5、如图为某停车场的平面示意图,若“奥迪”的坐标是(-2,-1),“奔驰”的坐标是(1,-1),则“东风标致”的坐标是( )

    A.(-3,2) B.(3,2) C.(-3,-2) D.(3,-2)
    6、若点M在第四象限,且M到x轴的距离为1,到y轴的距离为2,则点M的坐标为( )
    A.(1,-2) B.(2,1) C.(-2,1) D.(2,-1)
    7、在平面直角坐标系xOy中,点A(2,3)关于原点对称的点的坐标是( )
    A.(2,-3) B.(-2,3) C.(3,2) D.(-2,-3)
    8、从车站向东走400米,再向北走500米到小红家,从小强家向南走500米,再向东走200米到车站,则小强家在小红家的( )
    A.正东方向 B.正西方向 C.正南方向 D.正北方向
    9、已知点A(n,3)在y轴上,则点B(n-1,n+1)在第()象限
    A.四 B.三 C.二 D.一
    10、点在( )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,已知点A(2,0),B(0,4),C(2,4),若在所给的网格中存在一点D,使得CD与AB垂直且相等.

    (1)直接写出点D的坐标______;
    (2)将直线AB绕某一点旋转一定角度,使其与线段CD重合,则这个旋转中心的坐标为______.
    2、若点关于原点的对称点是,则______.
    3、在平面直角坐标系中,点与点B关于y轴对称,则点B的坐标是________.
    4、已知点A的坐标为,O为坐标原点,连结OA,将线段OA绕点О顺时针旋转90°得到线段,则点的坐标为______.
    5、在平面直角坐标系xOy中,横、纵坐标都是整数的点叫做整点.如图,点的坐标为(,4),点的坐标为(,1),点为第一象限内的整点,不共线的,,三点构成轴对称图形,则点的坐标可以是______(写出一个即可),满足题意的点的个数为________.

    三、解答题(10小题,每小题5分,共计50分)
    1、如图,在平面直角坐标系中,A(1,4)、B(2,1)、C(﹣3,2).
    (1)作△ABC关于x轴对称图形△A'B'C';
    (2)求△CAA'的面积.

    2、如图,在直角坐标系中按要求作图,所画图形的顶点必须与每个小正方形的顶点重合.

    (1)画出一个面积等于9的等腰直角三角形ABC,使△ABC的三个顶点在坐标轴上,且△ABC关于y轴对称,其中点A的坐标为(0,3);(点B在点C的左侧)
    (2)将△ABC向下平移3个单位,再向右平移1个单位得到△A1B1C1(点A、B、C的对应点分别为点A1、B1、C1),画出△A1B1C1,并直接写出A1C的长.
    3、在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在正方形网格的格点(网格线的交点)上.
    (1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1 ,3),点B坐标为(2 ,1);
    (2)请画出△ABC关于y轴对称的图形△A1B1C1,并写出点B1的坐标为    ;
    (3)P为y轴上一点,当PB+PC的值最小时,P点的坐标为 .

    4、如图1,将射线OX按逆时针方向旋转β角,得到射线OY,如果点P为射线OY上的一点,且OP=a,那么我们规定用(a,β)表示点P在平面内的位置,并记为P(a,β).例如,图2中,如果OM=8,∠XOM=110°,那么点M在平面内的位置,记为M(8,110),根据图形,解答下面的问题:
    (1)如图3,如果点N在平面内的位置记为N(6,30),那么ON=________;∠XON=________.
    (2)如果点A,B在平面内的位置分别记为A(5,30),B(12,120),画出图形并求出AOB的面积.

    5、如图,在平面直角坐标系中,线段AB的两个端点的坐标分别为A(﹣1,﹣2),B(﹣2,﹣4).
    (1)画出线段AB关于y轴对称的线段A1B1,再画出线段A1B1关于x轴对称的线段A2B2;
    (2)点A2的坐标为    ;
    (3)若此平面直角坐标系中有一点M(a,b),点M关于y轴对称的对称点M1,点M1关于x轴对称的对称点M2,则点M2的坐标为    .

    6、如图,在正方形网格中,每个小正方形的边长均为1,ABC的三个顶点都在格点上,结合所给的平面直角坐标系,解答下列问题:
    (1)请画出ABC关于x轴成轴对称的A1B1C1,并写出点A1的坐标;
    (2)请画出ABC关于点O成中心对称的A2B2C2,并写出点A2的坐标;
    (3)A1B1C1与A2B2C2关于某直线成轴对称吗?若是,请写出对称轴;若不是,请说明理由.

    7、在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).

    (1)请在如图所示的网格平面内作出平面直角坐标系.
    (2)请作出△ABC关于y轴对称的△A′B′C′.
    (3)求△ABC的面积 .
    8、如图所示,在平面直角坐标系中,已知,,.
    (1)在平面直角坐标系中画出,并求出的面积;
    (2)在(1)的条件下,把先关于y轴对称得到,再向下平移3个单位得到,则中的坐标分别为( ),( ),( );(直接写出坐标)
    (3)已知为轴上一点,若的面积为4,求点的坐标.

    9、已知,在10×10网格中建立如图所示的平面直角坐标系,△ABC是格点三角形(三角形的顶点是网格线的交点).

    (1)画出△ABC关于y轴对称的△A1B1C1;
    (2)画出△A1B1C1向下平移5个单位长度得到的△A2B2C2;
    (3)若点B的坐标为(4,2),请写出点B经过两次图形变换的对应点B2的坐标.
    10、如图,在平面直角坐标系中,△ABC的三个项点坐标分别为A(1,1)、B(3,4)、C(4,2).
    (1)在图中画出△ABC关于y轴对称的△A1B1C1;
    (2)通过平移,使B1移动到原点O的位置,画出平移后的△A2B2C2.
    (3)在△ABC中有一点P(a,b),则经过以上两次变换后点P的对应点P2的坐标为_______.


    -参考答案-
    一、单选题
    1、C
    【分析】
    利用两个点关于原点对称时,它们的坐标符号相反,即点关于原点的对称点是,进而求出即可.
    【详解】
    解:点与点关于原点对称,
    ,,
    故.
    故选:C.
    【点睛】
    本题主要考查了关于原点对称点的坐标,解题的关键是正确掌握关于原点对称点的性质.
    2、B
    【分析】
    根据点(x,y)关于原点对称的点的坐标为(﹣x,﹣y)可求得m、n值,再根据象限内点的坐标的符号特征即可解答.
    【详解】
    解:∵点与关于原点对称,
    ∴m=-2,m-n=﹣3,
    ∴n=1,
    ∴点M(-2,1)在第二象限,
    故选:B.
    【点睛】
    本题考查平面直角坐标系中关于原点对称的点的坐标、点所在的象限,熟知关于原点对称的点的坐标特征是解答的关键.
    3、A
    【分析】
    根据第三象限点的横坐标与纵坐标都是负数,然后判断点Q所在的象限即可.
    【详解】
    ∵点P(m,n)在第三象限,
    ∴m<0,n<0,
    ∴-m>0,-n>0,
    ∴点在第一象限.
    故选:A.
    【点睛】
    本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    4、C
    【分析】
    由对应点坐标确定平移方向,再由平移得出x,y的值,即可计算x+y.
    【详解】
    ∵A(3,﹣2),B(1,0)平移后的对应点C(5,x),D(y,0),
    ∴平移方法为向右平移2个单位,
    ∴x=﹣2,y=3,
    ∴x+y=1,
    故选:C.
    【点睛】
    本题考查坐标的平移,掌握点坐标平移的性质是解题的关键,点坐标平移:横坐标左减右加,纵坐标下减上加.
    5、D
    【分析】
    由题意,先建立平面直角坐标系,确定原点的位置,即可得到“东风标致”的坐标.
    【详解】
    解:∵“奥迪”的坐标是(2,1),“奔驰”的坐标是(1,1),
    ∴建立平面直角坐标系,如图所示:

    ∴“东风标致”的坐标是(3,2);
    故选:D.
    【点睛】
    本题考查了坐标确定位置:平面坐标系中的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.
    6、D
    【分析】
    先判断出点的横、纵坐标的符号,再根据点到轴、轴的距离即可得.
    【详解】
    解:点在第四象限,
    点的横坐标为正数,纵坐标为负数,
    点到轴的距离为1,到轴的距离为2,
    点的纵坐标为,横坐标为2,
    即,
    故选:D.
    【点睛】
    本题考查了点坐标,熟练掌握各象限内的点坐标的符号规律是解题关键.
    7、D
    【分析】
    根据“关于原点对称的两个点,横坐标、纵坐标分别互为相反数”即可求得.
    【详解】
    解:点A(2,3)关于原点对称的点的坐标是
    故选D
    【点睛】
    本题考查了关于原点对称的点的坐标特征,掌握“关于原点对称的两个点,横坐标、纵坐标分别互为相反数”是解题的关键.
    8、B
    【分析】
    根据二人向同一方向走的距离可知二人的方向关系,解答即可.
    【详解】
    解:二人都在车站北500米,小红在学校东,小强在学校西,所以小强家在小红家的正西.

    【点睛】
    本题考查方向角,解题的关键是画出相应的图形,利用数形结合的思想进行解答.
    9、C
    【分析】
    直接利用y轴上点的坐标特点得出n的值,进而得出答案.
    【详解】
    解:∵点A(n,3)在y轴上,
    ∴n=0,
    则点B(n-1,n+1)为:(-1,1),在第二象限.
    故选:C.
    【点睛】
    本题主要考查了点的坐标,正确得出n的值是解题关键.
    10、C
    【分析】
    根据各象限内点的坐标特征解答.
    【详解】
    解:点的横坐标小于0,纵坐标小于0,点所在的象限是第三象限.
    故选:C.
    【点睛】
    本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).
    二、填空题
    1、 或
    【分析】
    (1)观察坐标系即可得点D坐标;
    (2)对应点连线段的垂直平分线的交点即为旋转中心.
    【详解】
    解:(1)观察图象可知,点D的坐标为(6,6),
    故答案为:(6,6);
    (2)当点A与C对应,点B与D对应时,如图:

    此时旋转中心P的坐标为(4,2);
    当点A与D对应,点B与C对应时,如图:

    此时旋转中心P的坐标为(1,5);
    故答案为:(4,2)或(1,5).
    【点睛】
    本题考查坐标与图形变化−旋转,解题的关键是理解对应点连线段的垂直平分线的交点即为旋转中心.
    2、
    【分析】
    根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.
    【详解】
    解:由关于坐标原点的对称点为,得,

    解得:
    故答案为:.
    【点睛】
    本题考查了关于原点的对称的点的坐标,解题的关键是掌握关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.
    3、(-2,4)
    【分析】
    根据点(x,y)关于y轴对称的点的坐标为(-x, y)进行解答即可.
    【详解】
    解:点A(2,4)关于y轴对称的点B的坐标是(-2,4),
    故答案为:(-2,4).
    【点睛】
    本题考查关于y轴对称的点的坐标,熟知关于y轴对称的点的坐标变换规律是解答的关键.
    4、(b,-a)
    【分析】
    设A在第一象限,画出图分析,将线段OA绕点O按顺时针方向旋转90°得OA1,如图所示.根据旋转的性质,A1B1=AB,OB1=OB.综合A1所在象限确定其坐标,其它象限解法完全相同.
    【详解】
    解:设A在第一象限,将线段OA绕点O按顺时针方向旋转90°得OA1,如图所示.
    ∵A(a,b),
    ∴OB=a,AB=b,
    ∴A1B1=AB=b,OB1=OB=a,
    因为A1在第四象限,所以A1(b,﹣a),
    A在其它象限结论也成立.

    故答案为:(b,﹣a),
    【点睛】
    本题考查了图形的旋转,设点A在某一象限是解题的关键.
    5、(,)(答案不唯一) 7
    【分析】
    根据题意建立平面直角坐标系,进而根据题意找等腰三角形即可
    【详解】
    建立如下坐标系,如图,则点

    如图,根据题意不共线的,,三点构成轴对称图形,则是等腰三角形,根据等腰三角形的性质可得这样的点有7个,分别为:

    故答案为:(3,1);7
    【点睛】
    本题考查了等腰三角形的判定,轴对称的性质,将题目转化为找等腰三角形是解题的关键.
    三、解答题
    1、(1)见解析;(2)16
    【分析】
    (1)分别作出三个顶点关于x轴的对称点,再首尾顺次连接即可;
    (2)直接根据三角形的面积公式求解即可.
    【详解】
    解:(1)如图所示,△A'B'C'即为所求.

    (2)△CAA'的面积为×8×4=16.
    【点睛】
    本题主要考查作图—轴对称变换,解题的关键是掌握轴对称变换的定义和性质.
    2、(1)见解析;(2)画图见解析,A1C的长为4.
    【详解】
    解:(1)如图,△ABC即为所求.

    ∵AO=BO=CO=3,且AO⊥BC,
    ∴∠BAO=∠CAO=45°,△ABC的面积=BCAO=9,
    ∴∠BAC=90°,且△ABC关于y轴对称;
    (2)如图,△A1B1C1即为所求.
    如图,A1C的长为4.
    【点睛】
    本题考查了根据平移变换作图以及等腰直角三角形的判定和性质,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.
    3、(1)见详解;(2)△A1B1C1即为所求,见详解,(-2,1);(3)(0,3).
    【分析】
    (1)根据点A及点B的坐标,易得y轴在A的左边一个单位,x轴在A的下方3个单位,建立直角坐标系即可;
    (2)根据平面直角坐标系求出点C坐标,根据ABC关于y轴对称的图形为△A1B1C1,求出A1(-1,3),B1(-2,1),C1(-4,7),描点A1(-1,3),B1(-2,1),C1(-4,7),再顺次连接即可画出ABC关于y轴对称的图形为△A1B1C1;
    (3)过C1作y轴平行线与过B作x轴平行线交于G,BG交y轴于H,直接利用轴对称求最短路线的方法,根据点C的对称点为C1,连接BC1与y轴相交,此交点即为点P即可得出PB+PC的值最小,先证△GBC1为等腰直角三角形,再证△PHB为等腰直角三角形,最后求出y轴交点坐标即可.
    【详解】
    解:(1)点A坐标为(1 ,3),点B坐标为(2 ,1)
    点A向左平移1个单位为y轴,再向下平移3个单位为x轴,建立如图平面直角坐标系,
    如图所示:即为作出的平面直角坐标系;

    (2)根据图形得出出点C(4,7)
    ∵△ABC关于y轴对称的图形△A1B1C1,关于y轴对称的点的特征是横坐标互为相反数,纵坐标不变,
    ∵A(1,3),B (2,1),C(4,7),
    ∴A1(-1,3),B1(-2,1),C1(-4,7),
    在平面直角坐标系中描点A1(-1,3),B1(-2,1),C1(-4,7),
    顺次连接A1B1, B1C1, C1 A1,
    如图所示:△A1B1C1即为所求,
    故答案为:(-2,1);
    (3)如图所示:点P即为所求作的点.过C1作y轴平行线与过B作x轴平行线交于G,BG交y轴于H,
    ∵点C的对称点为C1,
    ∴连接BC1与y轴相交于一点即为点P,此时PB+PC的值最小,
    ∵B(2,1),C1(-4,7),
    ∴C1G=7-1=6,BG=2-(-4)=6,
    ∴C1G=BG,
    ∴△GBC1为等腰直角三角形,
    ∴∠GBC1=45°,
    ∵∠OHB=90°,
    ∴△PHB为等腰直角三角形,
    ∴yP-1=2-0,
    解得yP=3,
    ∴点P(0,3).
    故答案为(0,3).

    【点睛】
    本题考查了建立平面直角坐标系,画轴对称图形,等腰直角三角形判定与性质,最短路径,掌握轴对称的性质及轴对称与坐标的变化规律并利用其准确作图,待定系数法求解析式是解答本题的关键.
    4、(1)6,30°;(2)见解析,30
    【分析】
    (1)由题意得第一个坐标表示此点距离原点的距离,第二个坐标表示此点与原点的连线与x轴所夹的角的度数;
    (2)根据相应的度数判断出△AOB的形状,再利用三角形的面积公式求解即可.
    【详解】
    (1)根据点N在平面内的位置N(6,30)可知,ON=6,∠XON=30°.
    答案:6,30°
    (2)如图所示:

    ∵A(5,30),B(12,120),
    ∴∠BOX=120°,∠AOX=30°,
    ∴∠AOB=90°,
    ∵OA=5,OB=12,
    ∴△AOB的面积为OA·OB=30.
    【点睛】
    本题考查了坐标确定位置及旋转的性质,解决本题的关键是理解所给的新坐标的含义.
    5、(1)见详解;(2)(1,2);(3)(-a,-b).
    【分析】
    (1)分别作出A、B二点关于y轴的对称点A1、B1,再分别作出A1、B1二点关于x轴的对称点A2、B2即可;
    (2)根据图示得出坐标即可;
    (3)根据轴对称的性质得出坐标即可.
    【详解】
    解:(1)如图所示:

    线段A1B1和线段A2B2即为所求;
    (2) 点A2的坐标为(1,2);
    (3)点M(a,b),关于y轴对称的对称点M1(-a,b),点M1关于x轴对称的对称点M2(-a,-b),故点M2的坐标为(-a,-b).
    【点睛】
    本题考查作图-轴对称变换,轴对称-最短问题,两点之间线段最短等知识,解题的关键是熟练掌握轴对称的概念,利用对称解决最短问题,属于中考常考题型.
    6、(1)画图见解析,点A1的坐标;(-4,3);(2)画图见解析,点A2的坐标(4,3);(3)△A1B1C1与△A2B2C2关于y轴成轴对称,对称轴为y轴.
    【分析】
    (1)分别作出A,B,C的对应点A1,B1,C1即可;
    (2)分别作出A,B,C的对应点A2,B2,C2即可;
    (3)根据轴对称的定义判断即可.
    【详解】
    解:(1)如图,△A1B1C1即为所求,点A的对应点A1的坐标;(-4,3);
    (2)如图,△A2B2C2即为所求,点A2的坐标(4,3);

    (3)△A1B1C1与△A2B2C2关于y轴成轴对称,对称轴为y轴.
    【点睛】
    本题考查作图-旋转变换,轴对称变换,中心对称等知识,解题的关键是理解题意,灵活运用所学知识解决问题.注意:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
    7、
    (1)见解析;
    (2)见解析;
    (3)4.
    【分析】
    (1)根据点坐标直接确定即可;
    (2)根据轴对称的性质得到点A′、B′、C′,顺次连线即可得到△A′B′C′;
    (3)利用面积加减法计算.
    (1)
    如图所示:
    (2)
    解:如图所示:
    (3)
    解:△ABC的面积:3×4﹣4×2﹣2×1﹣2×3=12﹣4﹣1﹣3=4,
    故答案为:4.
    【点睛】
    此题考查了确定直角坐标系,作轴对称图形,计算网格中图形的面积,正确掌握轴对称的性质及网格中图形面积的计算方法是解题的关键.
    8、(1)见解析,4;(2)0,-2,-2,-3,-4,0;(3)或.
    【分析】
    (1)先画出△ABC,然后再利用割补法求△ABC得面积即可;
    (2)先作出,然后结合图形确定所求点的坐标即可;
    (3)先求出PB的长,然后分P在B的左侧和右侧两种情况解答即可.
    【详解】
    解:(1)画出如图所示:
    的面积是:;
    (2)作出如图所示,则(0,-2),( -2,-3),(-4,0)
    故填:0,-2,-2,-3,-4,0;
    (3)∵P为x轴上一点,的面积为4,
    ∴,
    ∴当P在B的右侧时,横坐标为:
    当P在B的左侧时,横坐标为,
    故P点坐标为:或.

    【点睛】
    本题主要考查了轴对称、三角形的平移、三角形的面积以及平面直角坐标系中点的坐标等知识点,根据题意画出图形成为解答本题的关键.
    9、(1)见解析;(2)见解析;(3)(﹣4,﹣3)
    【分析】
    (1)分别作出A,B,C 的对应点A1,B1,C1即可.
    (2)分别作出点A1,B1,C1的对应点A2,B2,C2即可.
    (3)根据所画图形,直接写出坐标即可.
    【详解】
    解:(1)如图所示,△A1B1C1即为所求;
    (2)如图所示,△A2B2C2即为所求;

    (3)点B2的坐标为(﹣4,﹣3).
    【点睛】
    本题考查作图——轴对称变换,平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
    10、(1)见解析;(2)见解析;(3)
    【分析】
    (1)关于y轴对称可知,对应点纵坐标不变,横坐标互为相反数,由此可作出;
    (2)由移动到原点O的位置可知,对应点向右平移了3个单位,向下平移了4个单位,由此可作出;
    (3)根据两次变换可知,点P先关于y轴对称,再进行平移,即先纵坐标不变,横坐标互为相反数,再向右平移了3个单位,最后向下平移了4个单位,即可得到的坐标.
    【详解】

    (1)如图所示,即为所作;
    (2)如图所示,即为所作;
    (3)点关于y轴对称得,
    向右平移3个单位,再向下平移4个单位得.
    故答案为:.
    【点睛】
    本题考查平移与轴对称变换,掌握平移和轴对称的性质是解题的关键.

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试巩固练习:

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试巩固练习,共31页。试卷主要包含了如果点P,若点P,在平面直角坐标系中,点A等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试一课一练:

    这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试一课一练,共27页。试卷主要包含了点P关于原点O的对称点的坐标是,点P关于原点对称的点的坐标是等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试巩固练习:

    这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试巩固练习,共25页。试卷主要包含了已知点A象限,如果点P,平面直角坐标系内一点P等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map