开学活动
搜索
    上传资料 赚现金

    2022年最新沪教版七年级数学第二学期第十五章平面直角坐标系定向攻克试题(精选)

    2022年最新沪教版七年级数学第二学期第十五章平面直角坐标系定向攻克试题(精选)第1页
    2022年最新沪教版七年级数学第二学期第十五章平面直角坐标系定向攻克试题(精选)第2页
    2022年最新沪教版七年级数学第二学期第十五章平面直角坐标系定向攻克试题(精选)第3页
    还剩32页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试当堂检测题

    展开

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试当堂检测题,共35页。试卷主要包含了若点P等内容,欢迎下载使用。
    七年级数学第二学期第十五章平面直角坐标系定向攻克
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、在平面直角坐标系中,点关于原点对称的点的坐标是( )
    A. B. C. D.
    2、△ABC在平面直角坐标系中的位置如图所示,将其绕点P顺时针旋转得到△A'B'C′,则点P的坐标是(  )

    A.(4,5) B.(4,4) C.(3,5) D.(3,4)
    3、一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1) →(1,0)→ … ],且每秒跳动一个单位,那么第25秒时跳蚤所在位置的坐标是( )

    A.(4,0) B.(5,0) C.(0,5) D.(5,5)
    4、在平面直角坐标系中,点A的坐标为(﹣4,3),若AB∥x轴,且AB=5,当点B在第二象限时,点B的坐标是(  )
    A.(﹣9,3) B.(﹣1,3) C.(1,﹣3) D.(1,3)
    5、在平面直角坐标系中,点关于x轴对称的点的坐标是( )
    A. B. C. D.
    6、小明在介绍郑州外国语中学位置时,相对准确的表述为( )
    A.陇海路以北 B.工人路以西
    C.郑州市人民政府西南方向 D.陇海路和工人路交叉口西北角
    7、在平面直角坐标系中,点A的坐标为.作点A关于x轴的对称点,得到点,再将点向左平移2个单位长度,得到点,则点所在的象限是( )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    8、若点P(m,1)在第二象限内,则点Q(1﹣m,﹣1)在(  )
    A.第四象限 B.第三象限 C.第二象限 D.第一象限
    9、在平面直角坐标系中,点在轴上,则点的坐标为( ).
    A. B. C. D.
    10、在平面直角坐标系中,点P(﹣2,﹣3)在(   )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在平面直角坐标系中,等腰直角三角形OAB,∠A=90°,点O为坐标原点,点B在x轴上,点A的坐标是(1,1).若将△OAB绕点O顺时针方向依次旋转45°后得到△OA1B1,△OA2B2,△OA3B3,…,可得A1(,0),A2(1,﹣1),A3(0,﹣),…则A2021的坐标是______.

    2、若点,关于x轴对称,则b的值为______.
    3、若点P(-5,a)与Q(b,)关于x轴对称,则代数式的值为___.
    4、点在直角坐标系的轴上,等于 ____.
    5、如图,已知点A(2,0),B(0,4),C(2,4),若在所给的网格中存在一点D,使得CD与AB垂直且相等.

    (1)直接写出点D的坐标______;
    (2)将直线AB绕某一点旋转一定角度,使其与线段CD重合,则这个旋转中心的坐标为______.
    三、解答题(10小题,每小题5分,共计50分)
    1、格点三角形(顶点是网格线的交点的三角形)△ABC在平面直角坐标系中的位置如图所示.
    (1)A点坐标为 ;A点关于y轴对称的对称点A1坐标为 .
    (2)请作出△ABC关于y轴对称的△A1B1C1;
    (3)请直接写出△A1B1C1的面积.

    2、△ABC在平面直角坐标系中的位置如图所示,已知A(﹣2,3),B(﹣3,1),C(﹣1,2).
    (1)画出△ABC绕点O逆时针旋转90°后得到的△A1B1C1;
    (2)画出△ABC关于原点O的对称图形△A2B2C2;
    (3)直接写出下列点的坐标:A1   ,B2   .

    3、已知点A(1,﹣1),B(﹣1,4),C(﹣3,1).
    (1)请在如图所示的平面直角坐标系中(每个小正方形的边长都为1)画出△ABC;
    (2)作△ABC关于x轴对称的△DEF,其中点A,B,C的对应点分别为点D,E,F;
    (3)连接CE,CF,请直接写出△CEF的面积.

    4、如图,在直角坐标系中,点A(3,3),B(4,0),C(0,2).
    (1)画出△ABC关于原点O对称的△A1B1C1.
    (2)求△A1B1C1的面积.

    5、如图,在平面直角坐标内,点A的坐标为(-4,0),点C与点A关于y轴对称.
    (1)请在图中标出点A和点C;
    (2)△ABC的面积是 ;
    (3)在y轴上有一点D,且S△ACD=S△ABC,则点D的坐标为 .

    6、如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(2,5),B(1,1),C(3,2)
    (1)画出△ABC关于轴对称的△A1B1C1的图形及各顶点的坐标;
    (2)画出△ABC关于轴对称的△A2B2C2的图形及各顶点的坐标;
    (3)求出△ABC的面积.

    7、如图,在平面直角坐标系中,点A的坐标为A(0,6),点B的坐标为B(8, 0),点P从点A出发,沿折线A→O→B以每秒1个单位长度的速度向终点B运动;点Q从B点出发,沿折线B→O→A以每秒3个单位长度的速度向终点A运动.P,Q两点同时出发,当其中一点到达终点时另一点也停止运动.直线l经过原点O,分别过P,Q两点作PE⊥l于E,QF⊥l于点F,设点P的运动时间为t(秒):
    (1)当P,Q两点相遇时,求t的值;
    (2)在整个运动过程中,用含t的式子表示Q点的坐标;
    (3)在整个运动过程中,以O,P,E为顶点的三角形与以O,Q,F为顶点的三角形能否全等?若能全等,请求出Q点的坐标,若不能全等,请说明理由.

    8、已知点,解答下列各题.
    (1)点P在x轴上,求出点P的坐标;
    (2)点Q的坐标为=,直线轴;求出点P的坐标;
    (3)若点P在第二象限,且它到x轴、y轴的距离相等,求的值.
    9、如图1所示,已知点,有以点为顶点的直角的两边分别与轴、轴相交于点.
    (1)试说明;
    (2)若点坐标为,点坐标为,请直接写出与之间的数量关系;
    (3)如图2所示,过点作线段,交轴正半轴于点,交轴负半轴于点,使得点为中点,且,绕着顶点旋转直角,使得一边交轴正半轴于点,另一边交轴正半轴于点,此时,和是否还相等,请说明理由;
    (4)在(3)条件下,请直接写出的值.

    10、如图,在平面直角坐标系中,AO=CO=6,AC交y轴于点B,∠BAO=30°,CO的垂直平分线过点B交x轴于点E.
    (1)求AE的长;
    (2)动点N从E出发,以1个单位/秒的速度沿射线EC方向运动,过N作x轴的平行线交直线OC于G,交直线BE于P,设GP的长为d,运动时间为t秒,请用含量t的式子表示d,并直接写出t的取值范围;
    (3)在(2)的条件下,动点M从A以1个单位/秒的速度沿射线AE运动,且点M与点N同时出发,MN与射线OC相交于点K,是否存在某一运动时间t,使得=2,若存在,请求出t值;若不存在,请说明理由.


    -参考答案-
    一、单选题
    1、A
    【分析】
    关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数,根据原理直接作答即可.
    【详解】
    解:点关于原点对称的点的坐标是:
    故选A
    【点睛】
    本题考查的是关于原点成中心对称的两个点的坐标规律,掌握“关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数”是解题的关键.
    2、B
    【分析】
    对应点的连线段的垂直平分线的交点,即为所求.
    【详解】
    解:如图,点即为所求,,

    故选:B.
    【点睛】
    本题考查坐标与图形变化旋转,解题的关键是理解对应点的连线段的垂直平分线的交点即为旋转中心.
    3、C
    【分析】
    根据题意,找出其运动规律,质点每秒移动一个单位,质点到达(1,0)时,共用3秒;质点到达(2,0)时,共用4秒;质点到达(0,2)时,共用4+4=8秒;质点到达(0,3)时,共用9秒;质点到达(3,0)时,共用9+6=15秒;以此类推, 即可得出答案.
    【详解】
    解:由题意可知,质点每秒移动一个单位
    质点到达(1,0)时,共用3秒;
    质点到达(2,0)时,共用4秒;
    质点到达(0,2)时,共用4+4=8秒;
    质点到达(0,3)时,共用9秒;
    质点到达(3,0)时,共用9+6=15秒;
    以此类推,质点到达(4,0)时,共用16秒;
    质点到达(0,4)时,共用16+8=24秒;
    质点到达(0,5)时,共用25秒;
    故选:C.
    【点睛】
    本题考查图形变化与运动规律,根据所给质点运动的特点能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间.找出规律是解题的关键.
    4、A
    【分析】
    根据平行及线段长度、点B在第二象限,可判断点B一定在点A的左侧,且两个点纵坐标相同,再由线段长即可确定点B的坐标.
    【详解】
    解:∵轴,且,点B在第二象限,
    ∴点B一定在点A的左侧,且两个点纵坐标相同,
    ∴,即,
    故选:A.
    【点睛】
    题目主要考查坐标系中点的坐标,理解题意,掌握坐标系中点的特征是解题关键.
    5、C
    【分析】
    根据若两点关于 轴对称,横坐标不变,纵坐标互为相反数,即可求解
    【详解】
    解:点关于x轴对称的点的坐标是
    故选:C
    【点睛】
    本题主要考查了平面直角坐标系内点关于坐标轴对称的特征,熟练掌握若两点关于 轴对称,横坐标不变,纵坐标互为相反数;若两点关于y轴对称,横坐标互为相反数,纵坐标不变是解题的关键.
    6、D
    【分析】
    根据位置的确定需要两个条件:方向和距离进行求解即可.
    【详解】
    解:A、陇海路以北只有方向,不能确定位置,故不符合题意;
    B、工人路以西只有方向,不能确定位置,故不符合题意;
    C、郑州市人民政府西南方向只有方向,不能确定位置,故不符合题意;
    D、陇海路和工人路交叉口西北角,是两个方向的交汇处,可以确定位置,符合题意;
    故选D.
    【点睛】
    本题主要考查了确定位置,熟知确定位置的条件是解题的关键.
    7、C
    【分析】
    根据题意结合轴对称的性质可求出点的坐标.再根据平移的性质可求出点的坐标,即可知其所在象限.
    【详解】
    ∵点A的坐标为(1,3),点是点A关于x轴的对称点,
    ∴点的坐标为(1,-3).
    ∵点是将点向左平移2个单位长度得到的点,
    ∴点的坐标为(-1,-3),
    ∴点所在的象限是第三象限.
    故选C.
    【点睛】
    本题考查轴对称的性质,平移中点的坐标的变化以及判断点所在的象限.根据题意求出点的坐标是解答本题的关键.
    8、A
    【分析】
    直接利用第二象限内点的坐标特点得出m的取值范围进而得出答案.
    【详解】
    ∵点P(m,1)在第二象限内,
    ∴m<0,
    ∴1﹣m>0,
    则点Q(1﹣m,﹣1)在第四象限.
    故选:A.
    【点睛】
    本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    9、A
    【分析】
    根据轴上的点的坐标特点纵坐标为0,即求得的值,进而求得点的坐标
    【详解】
    解:∵点在轴上,

    解得


    故选A
    【点睛】
    本题考查了轴上的点的坐标特征,理解“轴上的点的坐标特点是纵坐标为0”是解题的关键.平面直角坐标系中坐标轴上点的坐标特点:①x轴正半轴上的点:横坐标>0,纵坐标=0;②x轴负半轴上的点:横坐标0;
    ④y轴负半轴上的点:横坐标=0,纵坐标0,纵坐标>0;②第二象限的点:横坐标0;③第三象限的点:横坐标

    相关试卷

    数学第十五章 平面直角坐标系综合与测试同步练习题:

    这是一份数学第十五章 平面直角坐标系综合与测试同步练习题,共31页。试卷主要包含了如果点P,在平面直角坐标系中,点,已知A,在平面直角坐标系中,点P等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试一课一练:

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试一课一练,共27页。试卷主要包含了直角坐标系中,点A与点B关于,已知点M,平面直角坐标系中,点P,点A的坐标为,则点A在等内容,欢迎下载使用。

    2021学年第十五章 平面直角坐标系综合与测试课后复习题:

    这是一份2021学年第十五章 平面直角坐标系综合与测试课后复习题,共29页。试卷主要包含了如果点P,点P在第二象限内,P点到x等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map