初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课时训练
展开七年级数学第二学期第十五章平面直角坐标系定向攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图在平面直角坐标系中,点N与点F关于原点O对称,点F的坐标是(3,2),则点N的坐标是( )
A.(﹣3,﹣2) B.(﹣3,2) C.(﹣2,3) D.(2,3)
2、点P的坐标为(﹣3,2),则点P位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3、小明在介绍郑州外国语中学位置时,相对准确的表述为( )
A.陇海路以北 B.工人路以西
C.郑州市人民政府西南方向 D.陇海路和工人路交叉口西北角
4、在平面直角坐标系中,已知点P(5,−5),则点P在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
5、点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为( )
A.(-4,3) B.(4,-3) C.(-3,4) D.(3,-4)
6、在平面直角坐标系中,点关于x轴对称的点的坐标是( )
A. B. C. D.
7、若平面直角坐标系中的两点A(a,3),B(1,b)关于y轴对称,则a+b的值是( )
A.2 B.-2 C.4 D.-4
8、如图,在平面直角坐标系中,已知“蝴蝶”上有两点,,将该“蝴蝶”经过平移后点的对应点为,则点的对应点的坐标为( )
A. B. C. D.
9、点P(3,﹣2)关于原点O的对称点的坐标是( )
A.(3,﹣2) B.(﹣3,2) C.(﹣3,﹣2) D.(2,3)
10、点A关于y轴的对称点A1坐标是(2,-1),则点A关于轴的对称点A2坐标是( )
A.(-1,-2) B.(-2,1) C.(2,1) D.(2,-1)
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、坐标平面内的点P(m,﹣2020)与点Q(2021,n)关于原点对称,则m+n=_________.
2、在平面直角坐标系中,点(-2,5)关于原点对称的点的坐标是___________.
3、在平面直角坐标系xOy中,横、纵坐标都是整数的点叫做整点.如图,点的坐标为(,4),点的坐标为(,1),点为第一象限内的整点,不共线的,,三点构成轴对称图形,则点的坐标可以是______(写出一个即可),满足题意的点的个数为________.
4、点到轴的距离为______,到轴的距离为______.
5、在直角坐标系中,已知点P(a-2,2a+7),点Q(2,5),若直线PQ∥y轴,则线段PQ的长为_____.
三、解答题(10小题,每小题5分,共计50分)
1、如图,在平面直角坐标系中,已知A(1,4)、B(3,1)、C(3,5),△ABC关于y轴的对称图形为△A1B1C1
(1)请画出△ABC关于y轴对称图形△A1B1C1,并写出三个顶点的坐标A1( ), B1( ),C1( )
(2)在y轴上取点D,使得△ABD为等腰三角形,这样的点D共有 个
2、如图,在平面直角坐标系中,点为坐标原点,点,点在轴的负半轴上,点,连接、,且,
(1)求的度数;
(2)点从点出发沿射线以每秒2个单位长度的速度运动,同时,点从点出发沿射线以每秒1个单位长度的速度运动,连接、,设的面积为,点运动的时间为,求用表示的代数式(直接写出的取值范围);
(3)在(2)的条件下,当点在轴的正半轴上,点在轴的负半轴上时,连接、、,,且四边形的面积为25,求的长.
3、如图,已知△ABC各顶点的坐标分别为A(-3,2),B(-4,-3),C(-1,-1).
(1)请在图中画出△ABC关于y轴对称的△A1B1C1,
(2)并写出△A1B1C1的各点坐标.
4、(探索发现)等腰Rt△ABC中,∠BAC=90°,AB=AC,点A、B分别是y轴、x轴上两个动点, 直角边 AC 交x轴于点D,斜边BC交y轴于点E
(1)如图1,已知C点的横坐标为﹣1,请直接写出点A的坐标
(2)如图2,当等腰Rt△ABC运动到使点D恰为AC中点时,连接DE,求证:∠ADB=∠CDE
(拓展应用)
(3)如图3,若点A在x轴上,且A(﹣4,0),点B在y轴的正半轴上运动时,分别以OB、 AB为直角边在第一、二象限作等腰直角△BOD和等腰直角△ABC,连接CD交y轴于点P,当点B在y轴的正半轴上运动时,BP的长度是否变化?若变化请说明理由,若不变化,请直接写出BP的长度为
5、如图,在平面直角坐标系中,已知的三个顶点都在网格的格点上.
(1)在图中作出关于轴对称的,并写出点的对应点的坐标;
(2)在图中作出关于轴对称的,并写出点的对应点的坐标.
6、如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(0,3),B(﹣3,5),C(﹣4,1).
(1)把△ABC向右平移3个单位得△A1B1C1,请画出△A1B1C1并写出点A1的坐标;
(2)把△ABC绕原点O旋转180°得到△A2B2C2,请画出△A2B2C2.
7、如图,已知△ABC三个顶点的坐标分A(﹣3,2),B(﹣1,3),C(﹣2,1).将△ABC先向右平移4个单位,再向下平移3个单位后,得到△A′B′C′,点A,B,C的对应点分别为A′、B′、C′.
(1)根据要求在网格中画出相应图形;
(2)写出△A′B′C′三个顶点的坐标.
8、如图,在平面直角坐标系中,的三个顶点都在格点上,点的坐标为,请回答下列问题.
(1)画出关于x轴对称的,并写出点的坐标(___,___)
(2)点P是x轴上一点,当的长最小时,点P坐标为______;
(3)点M是直线BC上一点,则AM的最小值为______.
9、如图,在平面直角坐标系中,直角的三个顶点分别是,,.
(1)将以点为旋转中心顺时针旋转,画出旋转后对应的并写出各个顶点坐标;
(2)分别连结,后,求四边形的面积.
10、如图所示的方格纸中,每个小方格的边长都是,点,,.
(1)作关于轴对称的;
(2)通过作图在轴上找出点,使最小,并直接写出点的坐标.
-参考答案-
一、单选题
1、A
【分析】
根据点F点N关于原点对称,即可求解.
【详解】
解:∵F点与N点关于原点对称,点F的坐标是(3,2),
∴N点坐标为(﹣3,﹣2).
故选:A
【点睛】
本题主要考查了关于原点对称的点的坐标特征,熟练掌握若两点关于原点对称,横纵坐标均互为相反数是解题的关键.
2、B
【分析】
根据平面直角坐标系中四个象限中点的坐标特点求解即可.
【详解】
解:∵点P的坐标为(﹣3,2),
∴则点P位于第二象限.
故选:B.
【点睛】
此题考查了平面直角坐标系中四个象限中点的坐标特点,解题的关键是熟练掌握平面直角坐标系中四个象限中点的坐标特点:第一象限横坐标为正,纵坐标为正;第二象限横坐标为负,纵坐标为正;第三象限横坐标为负,纵坐标为负;第四象限横坐标为正,纵坐标为负.
3、D
【分析】
根据位置的确定需要两个条件:方向和距离进行求解即可.
【详解】
解:A、陇海路以北只有方向,不能确定位置,故不符合题意;
B、工人路以西只有方向,不能确定位置,故不符合题意;
C、郑州市人民政府西南方向只有方向,不能确定位置,故不符合题意;
D、陇海路和工人路交叉口西北角,是两个方向的交汇处,可以确定位置,符合题意;
故选D.
【点睛】
本题主要考查了确定位置,熟知确定位置的条件是解题的关键.
4、D
【分析】
根据各象限内点的坐标特征解答即可.
【详解】
解:点P(5,-5)的横坐标大于0,纵坐标小于0,所以点P所在的象限是第四象限.
故选:D.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
5、C
【分析】
根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.
【详解】
解:∵点P在第二象限内,点P到x轴的距离是4,到y轴的距离是3,
∴点P的横坐标是-3,纵坐标是4,
∴点P的坐标为(-3,4).
故选C.
【点睛】
本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.
6、C
【分析】
根据若两点关于 轴对称,横坐标不变,纵坐标互为相反数,即可求解
【详解】
解:点关于x轴对称的点的坐标是
故选:C
【点睛】
本题主要考查了平面直角坐标系内点关于坐标轴对称的特征,熟练掌握若两点关于 轴对称,横坐标不变,纵坐标互为相反数;若两点关于y轴对称,横坐标互为相反数,纵坐标不变是解题的关键.
7、A
【分析】
直接利用关于y轴对称点的性质,横坐标互为相反数,纵坐标相同,进而得出答案.
【详解】
解:依题意可得a=-1,b=3
∴a+b=2
故选A.
【点睛】
此题主要考查了关于y轴对称点的性质,正确掌握横纵坐标的符号关系是解题关键.
8、D
【分析】
先根据与点对应,求出平移规律,再利用平移特征求出点B′坐标即可
【详解】
解:∵与点对应,
∴平移1-3=-2,3-7=-4,
先向下平移4个单位,再向左平移2个单位,
∵点B(7,7),
∴点B′(7-2,7-4)即.
如图所示
故选:D.
【点睛】
本题考查图形与坐标,点的平移特征,掌握点的平移特征是解题关键.
9、B
【分析】
根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数”解答.
【详解】
解:点P(3,﹣2)关于原点O的对称点P'的坐标是(﹣3,2).
故选:B.
【点睛】
本题主要考查了关于原点对称的点的坐标的特点,正确掌握横纵坐标的关系是解题关键.
10、B
【分析】
由题意由对称性先求出A点坐标,再根据对称性求出点关于轴的对称点坐标.
【详解】
解:由点关于轴的对称点坐标是,可知A为,则点关于轴的对称点坐标是.
故选B.
【点睛】
本题考查对称性,利用点关于轴对称,横轴坐标变为相反数,纵轴坐标不变以及点关于轴对称,纵轴坐标变为相反数,横轴坐标不变进行分析.
二、填空题
1、-1
【分析】
根据“关于原点对称的点,横坐标与纵坐标都互为相反数”求出m、n的值,然后相加计算即可得解.
【详解】
解:∵点P(m,-2020)与点Q(2021,n)关于原点对称,
∴m=﹣2021,n=2020,
∴m+n=﹣1.
故答案为:-1.
【点睛】
本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.
2、(2,-5)
【分析】
根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y).
【详解】
解:根据中心对称的性质,得点P(-2,5)关于原点对称点的点的坐标是(2,-5).
故答案为:(2,-5).
【点睛】
本题主要考查了关于原点对称的点坐标的关系,是需要识记的基本问题.记忆方法是结合平面直角坐标系的图形记忆,比较简单.
3、(,)(答案不唯一) 7
【分析】
根据题意建立平面直角坐标系,进而根据题意找等腰三角形即可
【详解】
建立如下坐标系,如图,则点
如图,根据题意不共线的,,三点构成轴对称图形,则是等腰三角形,根据等腰三角形的性质可得这样的点有7个,分别为:
故答案为:(3,1);7
【点睛】
本题考查了等腰三角形的判定,轴对称的性质,将题目转化为找等腰三角形是解题的关键.
4、5 2
【分析】
根据横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是点到x轴的距离即可求解.
【详解】
解:点到轴的距离为,到轴的距离为2.
故答案为:5;2
【点睛】
本题考查了坐标与图形的性质,横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是点到x轴的距离,掌握坐标的意义是解题的关键.
5、10
【分析】
直线PQ∥y轴,则P、Q两点横坐标相等,有a-2=2,得a=4,则P点坐标为(2,15),PQ的长为=10.
【详解】
∵直线PQ∥y轴
∴a-2=2
∴a=4
∴P点坐标为(2,15)
PQ==10.
故答案为10.
【点睛】
本题考查了平面直角坐标系,平面直角坐标系中两点之间的线段与x轴平行,两点之间距离为横坐标差的绝对值,两点之间的线段与y轴平行,两点之间距离为纵坐标差的绝对值.
三、解答题
1、(1)见解析;-1,4 ;-3,1;-3,5;(2)5
【分析】
(1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可得;
(2)分AB为腰和AB为底分别求解可得.
【详解】
解:(1)如图所示,△A1B1C1即为所求.
A1(-1,4) ;B1(-3,1);C1(-3,5);
故答案为:-1,4 ;-3,1;-3,5;
(2)以点A为顶点、AB为腰的等腰三角形ABD,且点D在y轴上的有2个;
以点B为顶点,BA为腰的等腰△ABD,且点D在y轴上的有2个;
以AB为底边的等腰三角形,且点D在y轴上的点只有1个;
所以这样的点D共有5个,
故答案为:5.
【点睛】
本题主要考查作图-轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质,并据此得出变换后的对应点.
2、(1);(2);(3)5
【分析】
(1)根据非负数的性质求得的值,进而求得,即可证明是等腰直角三角形,即可求得的度数;
(2)分点在轴正半轴,原点,轴负半轴三种情况,根据点的运动表示出线段长度,进而根据三角形的面积公式即可列出代数式;
(3)过点作,连接,根据四边形的面积求得,进而求得,由,设,,则,证明,进而可得,,进一步导角可得,根据等角对等边即可求得
【详解】
(1)
是等腰直角三角形,
(2)①当点在轴正半轴时,如图,
,,
,
②当点在原点时,都在轴上,不能构成三角形,则时,不存在
③当点在轴负半轴时,如图,
,,
,
综上所述:
(3)如图,过点作,连接
,
设,,则,
是等腰直角三角形
在和中
,
是等腰直角三角形
中,
,
又
【点睛】
本题考查了非负数的性质,等腰三角形的性质与判定,全等三角形的性质与判定,正确的添加辅助线是解题的关键.
3、(1)见解析;(2)A1(3,2),B1(4,-3),C1(1,-1).
【分析】
(1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可;
(2)根据所作图形可得答案.
【详解】
解:(1)如图所示,△A1B1C1即为所求作.
(2)由图可知,A1(3,2),B1(4,-3),C1(1,-1).
【点睛】
本题主要考查作图-轴对称变换,解题的关键是掌握轴对称变换的定义和性质,并据此得出变换后的对应点.注意:关于x轴对称的点,横坐标相同,纵坐标互为相反数.
4、(1)A(0,1);(2)见解析;(3)不变,2
【分析】
(1)如图(1),过点C作CF⊥y轴于点F,构建全等三角形:△ACF≌△BAO(AAS),结合该全等三角形的对应边相等易得OA的长度,由点A是y轴上一点可以推知点A的坐标;
(2)过点C作CG⊥AC交y轴于点G,则△ACG≌△BAD(ASA),即得CG=AD=CD,∠ADB=∠G,由∠DCE=∠GCE=45°,可证△DCE≌△GCE(SAS)得∠CDE=∠G,从而得到结论;
(3)BP的长度不变,理由如下:如图(3),过点C作CH⊥y轴于点H,构建全等三角形:△CBH≌△BAO(AAS),结合全等三角形的对应边相等推知:CH=BO,BH=AO=4.再结合已知条件和全等三角形的判定定理AAS得到:△CPH≌△DPB,故BP=HP=2.
【详解】
解:(1)如图(1),过点C作CF⊥y轴于点F,
∵CF⊥y轴于点F,
∴∠CFA=90°,∠ACF+∠CAF=90°,
∵∠CAB=90°,
∴∠CAF+∠BAO=90°,
∴∠ACF=∠BAO,
在△ACF和△ABO中,
,
∴△ACF≌△BAO(AAS),
∴CF=OA=1,
∴A(0,1);
(2)如图2,过点C作CG⊥AC交y轴于点G,
∵CG⊥AC,
∴∠ACG=90°,∠CAG+∠AGC=90°,
∵∠AOD=90°,
∴∠ADO+∠DAO=90°,
∴∠AGC=∠ADO,
在△ACG和△ABD中,,
∴△ACG≌△BAD(AAS),
∴CG=AD=CD,∠ADB=∠AGC,
∵∠ACB=45°,∠ACG=90°,
∴∠DCE=∠GCE=45°,
在△DCE和△GCE中,,
∴△DCE≌△GCE(SAS),
∴∠CDE=∠AGC,
∴∠ADB=∠CDE;
(3)BP的长度不变,理由如下:
如图,过点C作CH⊥y轴于点H.
∵∠ABC=90°,
∴∠CBH+∠ABO=90°.
∵∠BAO+∠ABO=90°,
∴∠CBH=∠BAO.
∵∠CHB=∠AOB=90°,AB=AC,
∴△CBH≌△BAO(AAS),
∴CH=BO,BH=AO=4.
∵BD=BO,
∴CH=BD.
∵∠CHP=∠DBP=90°,∠CPE=∠DPB,
∴△CPH≌△DPB(AAS),
∴BP=HP=2.
故答案为:2.
【点睛】
本题考查了三角形综合题.主要利用了全等三角形的性质定理与判定定理,解决本题的关键是作出辅助线,构建全等三角形.
5、(1)为所求,图形见详解,点B1(-5,-1);(2)为所求,图形见详解,点B2(5,1).
【分析】
(1)根据关于轴对称的,求出A1(-6,-6),B1(-5,-1),C1(-1,-6),然后在平面直角坐标系中描点,顺次连接A1B1, B1C1,C1A1即可;
(2)根据关于轴对称的,求出A2(6,6),点B2(5,1),点C2(1,6),
然后在平面直角坐标系中描点,顺次连接A2B2, B2C2,C2A2即可.
【详解】
解:(1)根据点在平面直角坐标系中的位置,△ABC三点坐标分别为A(-6,6),B(-5,1),C(-1,6),
关于轴对称的,
关于x轴对称点的特征是横坐标不变,纵坐标互为相反数,
∴中点A1(-6,-6),点B1(-5,-1),点C1(-1,-6),
在平面直角坐标系中描点A1(-6,-6),B1(-5,-1),C1(-1,-6),
顺次连接A1B1, B1C1,C1A1,
则为所求,点B1(-5,-1);
(2)∵关于轴对称的,
∴点的坐标特征是横坐标互为相反数,纵坐标不变,
∵△ABC三点坐标分别为A(-6,6),B(-5,1),C(-1,6),
∴中点A2(6,6),点B2(5,1),点C2(1,6),
在平面直角坐标系中描点A2(6,6),B2(5,1),C2(1,6),
顺次连接A2B2, B2C2,C2A2,
则为所求,点B2(5,1).
【点睛】
本题考查在平面直角坐标系中画称轴对称的图形,掌握画图方法,先求坐标,描点,顺次连接是解题关键.
6、(1)图见解析;A1(3,3);(2)见解析
【分析】
(1)直接利用平移的性质得出对应点位置进而得出答案;
(2)直接利用旋转的性质得出对应点位置进而得出答案.
【详解】
解:(1)如图所示:△A1B1C1,即为所求,点A1的坐标为:(3,3);
(2)如图所示:△A2B2C2,即为所求.
【点睛】
此题主要考查了旋转变换以及平移变换,正确得出对应点位置是解题关键.
7、(1)见解析;(2),,
【分析】
(1)利用平移变换的性质分别作出,,的对应点,,即可.
(2)根据平面直角坐标系写出,,的坐标.
【详解】
解:(1)如图,△即为所求,
(2)根据平面直角坐标系可得:,,.
【点睛】
本题考查作图平移变换等知识,解题的关键是掌握平移变换的性质,属于中考常考题型.
8、(1)5,-3;(2)(,0);(3)
【分析】
(1)利用关于x轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;
(2)连接BC1交x轴于点P,利用两点之间线段最短可判断P点满足条件,利用待定系数法求得直线BC1的解析式,即可求解;
(3)利用割补法求得△ABC的面积,利用两点之间的距离公式求得BC的长,再利用面积法即可求解.
【详解】
解:(1)如图,△A1B1C1为所作,点C1的坐标为(5,-3);
故答案为:5,-3;
(2)如图,点P为所作.
设直线BC1的解析式为y=kx+b,
∵点C1的坐标为(5,-3),点B的坐标为(1,2),
∴,解得:,
∴直线BC1的解析式为y=x+,
当y=0时,x=,
∴点P的坐标为(,0);
故答案为:(,0);
(3)根据垂线段最短,当AM垂直BC时,垂线段AM取得最小值,
△ABC的面积为2×4-×2×1-×4×1-×3×1=;
BC=,
∵××AM=,
∴AM=.
故答案为:.
【点睛】
本题考查了作图-轴对称变换:几何图形都可看作是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.也考查了最短路径问题.注意:关于x轴对称的点,横坐标相同,纵坐标互为相反数.
9、(1)图见解析,,,;(2)9
【分析】
利用网格特点和旋转的性质画出、、的对应点、、,从而得到;
利用两个梯形的面积和减去一个三角形的面积计算四边形的面积.
【详解】
解:如图,为所作,各个顶点坐标为,,;
如图,四边形的面积.
【点睛】
本题考查了作图旋转变换,根据旋转的性质画出转后对应的是解决问题的关键.
10、(1)见解析;(2)见解析,点P的坐标为(−3,0)
【分析】
(1)先分别作出点A、B、C关于y轴的对称点,然后再顺次连接可得;
(2)作点A关于x轴的对称点A″,再连接A″C交x轴于点P,再确定点P的坐标即可.
【详解】
解:(1)如图所示:即为所求.
(2)作点A关于x轴的对称点A′′,连结A′′C,交x轴于点P,点P即为所求,点P的坐标为(−3,0)
【点睛】
本题主要考查作图﹣轴对称变换,熟练掌握轴对称变换的定义和性质及最短路径问题是解答本题的关键.
沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课时练习: 这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课时练习,共25页。试卷主要包含了下列各点,在第一象限的是,点关于轴对称的点的坐标是等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试一课一练: 这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试一课一练,共27页。试卷主要包含了在下列说法中,能确定位置的是,一只跳蚤在第一象限及x轴等内容,欢迎下载使用。
初中沪教版 (五四制)第十五章 平面直角坐标系综合与测试当堂检测题: 这是一份初中沪教版 (五四制)第十五章 平面直角坐标系综合与测试当堂检测题,共28页。试卷主要包含了已知点A等内容,欢迎下载使用。