![2021-2022学年度沪教版七年级数学第二学期第十五章平面直角坐标系综合训练试卷(无超纲带解析)第1页](http://m.enxinlong.com/img-preview/2/3/12711651/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度沪教版七年级数学第二学期第十五章平面直角坐标系综合训练试卷(无超纲带解析)第2页](http://m.enxinlong.com/img-preview/2/3/12711651/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度沪教版七年级数学第二学期第十五章平面直角坐标系综合训练试卷(无超纲带解析)第3页](http://m.enxinlong.com/img-preview/2/3/12711651/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
还剩29页未读,
继续阅读
初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试当堂达标检测题
展开这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试当堂达标检测题,共32页。试卷主要包含了点P的坐标为,点A个单位长度.,在平面直角坐标系中,点,在平面直角坐标系中,点A等内容,欢迎下载使用。
七年级数学第二学期第十五章平面直角坐标系综合训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知A(2,5),若B是x轴上的一动点,则A、B两点间的距离的最小值为( )
A.2 B.3 C.3.5 D.5
2、如图,在一个单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,,是斜边在x轴上,斜边长分别为2,4,6,...的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2021的横坐标为( )
A.-1008 B.-1010 C.1012 D.-1012
3、已知点A(x+2,x﹣3)在y轴上,则x的值为( )
A.﹣2 B.3 C.0 D.﹣3
4、点P的坐标为(﹣3,2),则点P位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
5、点A(-3,1)到y轴的距离是( )个单位长度.
A.-3 B.1 C.-1 D.3
6、在平面直角坐标系中,点(2,﹣5)关于x轴对称的点的坐标是( )
A.(2,5) B.(﹣2,5) C.(﹣2,﹣5) D.(2,﹣5)
7、点(a,﹣3)关于原点的对称点是(2,﹣b),则a+b=( )
A.5 B.﹣5 C.1 D.﹣1
8、在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则( )
A.m=3,n=2 B.m=,n=2 C.m=2,n=3 D.m=,n=
9、如图,的顶点坐标为,,,若将绕点按顺时针方向旋转90°,再向左平移2个单位长度,得到,则点的对应点的坐标是( ).
A. B. C. D.
10、点M(2,4)先向左平移3个单位长度,再向上平移2个单位长度得到的点的坐标是( )
A.(-1,6) B.(-1,2) C.(-1,1) D.(4,1)
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,边长为1的正六边形放置于平面直角坐标系中,边在轴正半轴上,顶点在轴正半轴上,将正六边形绕坐标原点顺时针旋转,每次旋转,那么经过第2022次旋转后,顶点的坐标为________.
2、如图,有一个英文单词,它的各个字母的位置依次是,,,,,所对应的字母,如对应的字母是,则这个英文单词为_____.
3、如图,在平面直角坐标系中,四边形ABOC是正方形,点A的坐标为(1,1),是以点B为圆心,BA为半径的圆弧;是以点O为圆心,OA1为半径的圆弧,是以点C为圆心,CA2为半径的圆弧,是以点A为圆心,AA3为半径的圆弧,继续以点B、O、C、A为圆心按上述作法得到的曲线AA1A2A3A4A5…称为正方形的“渐开线”,那么点A2021的坐标是______.
4、如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2022次得到正方形OA2022B2022C2022,如果点A的坐标为(1,0),那么点B2022的坐标为 ___.
5、如图所示,在平面直角坐标系中,射线OA将由边长为1的7个小正方形组成的图案的面积分成相等的两部分,则点A的坐标为________.
三、解答题(10小题,每小题5分,共计50分)
1、如图,在平面直角坐标系中,已知A(1,4)、B(3,1)、C(3,5),△ABC关于y轴的对称图形为△A1B1C1
(1)请画出△ABC关于y轴对称图形△A1B1C1,并写出三个顶点的坐标A1( ), B1( ),C1( )
(2)在y轴上取点D,使得△ABD为等腰三角形,这样的点D共有 个
2、如图,在平面直角坐标系中有一个△ABC,顶点A(-1,3),B(2,0),C(-3,-1).
(1)画出△ABC关于y轴的对称图形△A1B1C1(不写画法);点A关于x轴对称的点坐标为_______;点B关于y轴对称的点坐标为_______;
(2)若网格上的每个小正方形的边长为1,则△ABC的面积是_______.
3、如图,三个顶点的坐标分别是.
(1)请画出关于x轴对称的图形;
(2)求的面积;
(3)在x轴上求一点P,使周长最小,请画出,并通过画图求出P点的坐标.
4、已知点A(a+2b,1),B(﹣2,2a﹣b),若点A,B关于y轴对称,求a+b的值.
5、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(0, -1),
(1)写出A、B两点的坐标;
(2)画出△ABC关于y轴对称的△A1B1C1 ;
(3)画出△ABC绕点C旋转180°后得到的△A2B2C2.
6、如图,在平面直角坐标系中,的三个顶点均在格点上.
(1)在网格中作出关于轴对称的图形;
(2)直接写出以下各点的坐标:________,________,________;
(3)网格的单位长度为1.则________.
7、如图,在平面直角坐标系中,点为坐标原点,点,点在轴的负半轴上,点,连接、,且,
(1)求的度数;
(2)点从点出发沿射线以每秒2个单位长度的速度运动,同时,点从点出发沿射线以每秒1个单位长度的速度运动,连接、,设的面积为,点运动的时间为,求用表示的代数式(直接写出的取值范围);
(3)在(2)的条件下,当点在轴的正半轴上,点在轴的负半轴上时,连接、、,,且四边形的面积为25,求的长.
8、如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).
(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.
(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2,并写出点A2的坐标.
9、在如图所示的平面直角坐标系中,A点坐标为.
(1)画出关于y轴对称的;
(2)求的面积.
10、如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(3,2).
(1)将△ABC向下平移四个单位长度,画出平移后的△A1B1C1;(点A、B、C的对应点分别是点A1、B1、C1);
(2)画出△A1B1C1关于y轴对称的△A2B2C2(点A1、B1、C1的对称点分别是点A2、B2、C2).
-参考答案-
一、单选题
1、D
【分析】
当AB⊥x轴时,AB距离最小,最小值即为点A纵坐标的绝对值,据此可得.
【详解】
解:∵A(﹣2,5),且点B是x轴上的一点,
∵当AB⊥x轴时,AB距离最小,即B点(-2,0)
∴A、B两点间的距离的最小值5.
故选:D.
【点睛】
本题考查了直线外一点与直线上各点连接的所有线段中,垂线段最短;直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.
2、C
【分析】
首先确定角码的变化规律,利用规律确定答案即可.
【详解】
解:∵各三角形都是等腰直角三角形,
∴直角顶点的纵坐标的长度为斜边的一半,
A3(0,0),A7(2,0),A11(4,0)…,
∵2021÷4=505余1,
∴点A2021在x轴正半轴,纵坐标是0,横坐标是(2021+3)÷2=1012,
∴A2021的坐标为(1012,0).
故选:C
【点睛】
本题是对点的坐标变化规律的考查,根据2021是奇数,求出点的角码是奇数时的变化规律是解题的关键.
3、A
【分析】
根据y轴上点的横坐标为0列方程求解即可.
【详解】
解:∵点A(x+2,x﹣3)在y轴上,
∴x+2=0,
解得x=-2.
故选:A.
【点睛】
本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键.
4、B
【分析】
根据平面直角坐标系中四个象限中点的坐标特点求解即可.
【详解】
解:∵点P的坐标为(﹣3,2),
∴则点P位于第二象限.
故选:B.
【点睛】
此题考查了平面直角坐标系中四个象限中点的坐标特点,解题的关键是熟练掌握平面直角坐标系中四个象限中点的坐标特点:第一象限横坐标为正,纵坐标为正;第二象限横坐标为负,纵坐标为正;第三象限横坐标为负,纵坐标为负;第四象限横坐标为正,纵坐标为负.
5、D
【分析】
由点到轴的距离等于该点坐标横坐标的绝对值,可以得出结果.
【详解】
解:由题意知到轴的距离为
到轴的距离是个单位长度
故选D.
【点睛】
本题考察了点到坐标轴的距离.解题的关键在于明确距离的求解方法.距离为正值是易错点.解题技巧:点到轴的距离=;到轴的距离=.
6、A
【分析】
根据平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),据此即可求得点A(2,﹣5)关于x轴对称的点的坐标.
【详解】
解:∵点(2,﹣5)关于x轴对称,
∴对称的点的坐标是(2,5).
故选:A.
【点睛】
本题主要考查了关于x轴对称点的性质,点P(x,y)关于x轴的对称点P′的坐标是(x,-y).
7、B
【分析】
根据关于原点对称的点的坐标特证构造方程-b=3,a=−2,再解方程即可得到a、b的值,进而可算出答案.
【详解】
解:∵点(a,﹣3)关于原点的对称点是(2,﹣b),
∴−b=3,a=−2,
解得:b=-3,a=−2,
则,
故选择B.
【点睛】
本题主要考查了关于原点对称的点的坐标:掌握关于原点对称的特征,两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(−x,−y).关键是利用对称性质构造方程.
8、B
【分析】
由题意直接根据关于y轴对称点的性质求出m和n的值,从而得解.
【详解】
解:∵点A(m,2)与点B(3,n)关于y轴对称,纵坐标相同,横坐标互为相反数.
∴m=-3,n=2.
故答案为:B.
【点睛】
本题主要考查关于y轴对称点的性质,正确掌握横纵坐标的符号关系是解题的关键.
9、A
【分析】
画出旋转平移后的图形即可解决问题.
【详解】
解:旋转,平移后的图形如图所示,,
故选:A
【点睛】
本题考查坐标与图形变化−旋转,解题的关键是理解题意,学会利用图象法解决问题.
10、A
【分析】
直接利用平移中点的变化规律求解即可,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
【详解】
∵,,
∴得到的点的坐标是.
故选:A.
【点睛】
本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.
二、填空题
1、
【分析】
连接AD、BD,由勾股定理可得BD,求出∠OFA=30°,得到OA的值,进而求得OB的值,得到点D的坐标,由题意可得6次一个循环,即可求出经过第2022次旋转后,顶点的坐标.
【详解】
解:如图,连接AD,BD,
在正六边形ABCDEF中,,
∴,
在中,,
∴,
∴,
∴,
∴,
∵将正六边形ABCDEF绕坐标原点O顺时针旋转,每次旋转60°,
∴6次一个循环,
∵,
∴经过第2022次旋转后,顶点D的坐标与第一象限中D点的坐标相同,
故答案为:.
【点睛】
此题考查了正六边形的性质,平面直角坐标系中图形规律问题,解题的关键是正确分析出点D坐标的规律.
2、
【分析】
根据题目所给坐标,得出相应位置的字母,即可得出代表的英文单词.
【详解】
解:对应的字母为,
对应的字母为,
对应的字母为,
对应的字母为,
对应的字母为,
对应的字母为,
这个英文单词为:,
故答案为:.
【点睛】
本题考查了平面直角坐标系,能准确根据所给的坐标得出点的位置是解本题的关键.
3、(2021,0)
【分析】
将四分之一圆弧对应的A点坐标看作顺时针旋转90°,再根据A、A1、A2、A3、A4的坐标找到规律即可.
【详解】
∵A点坐标为(1,1),且A1为A点绕B点顺时针旋转90°所得
∴A1点坐标为(2,0)
又∵A2为A1点绕O点顺时针旋转90°所得
∴A2点坐标为(0,-2)
又∵A3为A2点绕C点顺时针旋转90°所得
∴A3点坐标为(-3,1)
又∵A4为A3点绕A点顺时针旋转90°所得
∴A4点坐标为(1,5)
由此可得出规律:An为绕B、O、C、A四点作为圆心依次循环顺时针旋转90°,且半径为1、2、3、、、n,每次增加1.
∵2021÷4=505…1
故A2021为以点B为圆心,半径为2021的A2020点顺时针旋转90°所得
故A2021点坐标为(2021,0).
故答案为:(2021,0).
【点睛】
本题考查了点坐标规律探索,通过点的变化探索出旋转的规律是解题的关键.
4、(1,﹣1)
【分析】
先利用勾股定理以及正方形、旋转的性质求出对应边长,再通过边长找出对应的前几个坐标,会发现:关于B的坐标,是每8个一循环,找到第2022个是对应的循环中的第6个,从而确定B2022坐标.
【详解】
∵点A的坐标为(1,0),
∴OA=1,
∵四边形OABC是正方形,
∴∠OAB=90°,AB=OA=1,
∴B(1,1),
连接OB,如图:
由勾股定理得:OB=,
由旋转的性质得:OB=OB1=OB2=OB3=…=,
∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,
相当于将线段OB绕点O逆时针旋转45°,依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,
∴B1(0,),B2(﹣1,1),B3(﹣,0),B4(﹣1,﹣1),B5(0,﹣),B6(1,﹣1),…,
发现是8次一循环,则2022÷8=252…6,
∴点B2022的坐标为(1,﹣1),
故答案为:(1,﹣1).
【点睛】
本题主要是图形旋转类的坐标规律问题,利用图形以及旋转的性质求出对应前几个相应点的坐标,从而发现其中规律,应用规律进行求解是解决此类问题的关键.
5、(,3),3)
【分析】
过A点作AB⊥y轴于B点,作AC⊥x轴于C点,由于射线OA将由边长为1的7个小正方形组成的图案的面面积分成相等的两部分,所以两边的面积分别为3.5,△AOB面积为5.5,即OB×AB=5.5,可解AB,则A点坐标可求.
【详解】
解:过A点作AB⊥y轴于B点,作AC⊥x轴于C点,
则AC=OB,AB=OC.
∵正方形的边长为1,
∴OB=3.
∵射线OA将由边长为1的7个小正方形组成的图案的面面积分成相等的两部分,
∴两边的面积分别为3.5.
∴△AOB面积为3.5+2=5.5,即OB×AB=5.5,
×3×AB=5.5,解得AB=.
所以点A坐标为(,3).
故答案为:(,3).
【点睛】
本题主要考查了点的坐标、三角形面积,解题的关键是过某点作x轴、y轴的垂线,垂线段长度再转化为点的坐标.
三、解答题
1、(1)见解析;-1,4 ;-3,1;-3,5;(2)5
【分析】
(1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可得;
(2)分AB为腰和AB为底分别求解可得.
【详解】
解:(1)如图所示,△A1B1C1即为所求.
A1(-1,4) ;B1(-3,1);C1(-3,5);
故答案为:-1,4 ;-3,1;-3,5;
(2)以点A为顶点、AB为腰的等腰三角形ABD,且点D在y轴上的有2个;
以点B为顶点,BA为腰的等腰△ABD,且点D在y轴上的有2个;
以AB为底边的等腰三角形,且点D在y轴上的点只有1个;
所以这样的点D共有5个,
故答案为:5.
【点睛】
本题主要考查作图-轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质,并据此得出变换后的对应点.
2、(1)图见解析,(-1,-3),(-2,0);(2)9
【分析】
(1)根据题意直接利用关于坐标轴对称点的性质得出各对应点位置即可;
(2)由题意利用△ABC所在矩形面积减去周围三角形面积进行计算进而得出答案.
【详解】
解:(1)如图,△A1B1C1即为所作,
点A关于x轴对称的点坐标为 (-1,-3);
点B关于y轴对称的点坐标为:(-2,0);
故答案为:(-1,-3),(-2,0);
(2)△ABC的面积是:4×5-×2×4-×3×3-×1×5=9.
故答案为:9.
【点睛】
本题主要考查轴对称变换以及求三角形面积-补全法,根据题意得出对应点位置是解题的关键.
3、(1)见解析;(2)3.5;(3)图形见解析,P点的坐标为
【分析】
(1)找到关于轴对称的点,顺次连接,则即为所求;
(2)根据网格的特点,根据即可求得的面积;
(3)连接,与轴交于点,根据对称性即可求得,点即为所求.
【详解】
解:(1)找到关于轴对称的点,顺次连接,则即为所求,如图
(2)
(3)根据作图可知,P点的坐标为
【点睛】
本题考查了画轴对称图形,坐标与图形,轴对称的性质求线段和的最小值,掌握轴对称的性质是解题的关键.
4、
【分析】
根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”列方程组求出a、b的值,然后相加计算即可得解.
【详解】
解:∵点A(a+2b,1),B(﹣2,2a﹣b)关于y轴对称,
∴,
解得,
∴a+b=.
【点睛】
本题考查了关于y轴对称的点的坐标特征,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
5、(1)A(-1,2) B(-3,1); (2)见解析;(3)见解析
【分析】
(1)根据 A,B 的位置写出坐标即可;
(2)分别求出 A,B,C 的对应点 A1,B1,C1的坐标,然后描点A1(1,2),B1(3,1),C1(0,-1),顺次连结A1B1, B1C1,C1A1即可;
(3)分别求出 A,B,C 的对应点A2(1,-4)、B2(3,-3)、C2(0,-1),然后描点,顺次连结A2B2, B2C2,C2A2即可.
【详解】
(1)由题意 A(-1,2),B(-3,1).
(2)△ABC关于y轴对称的△A1B1C1,对应点的坐标纵坐标不变,横坐标互为相反数,
∵A(-1,2),B(-3,1).C(0,-1),
∴A1(1,2),B1(3,1),C1(0,-1),
在平面直角坐标系中描点A1(1,2),B1(3,1),C1(0,-1),顺次连结A1B1, B1C1,C1A1,
如图△A1B1C1即为所求.
(3)△ABC绕点C旋转180°后得到的△A2B2C2,关于点C成中心对称,对应点的横坐标为互为相反数,
∵A(-1,2),B(-3,1).C(0,-1),
∴A2、B2、C2的横坐标分别为1,3,0,
纵坐标分别为-1-(2+1)=-4,-1-(1+1)=-3,-1,
∴A2(1,-4)、B2(3,-3)、C2(0,-1),
在平面直角坐标系中描点A2(1,-4)、B2(3,-3)、C2(0,-1),顺次连结A2B2, B2C2,C2A2,
如图△A2B2C2即为所求.
【点睛】
本题主要考查图形与坐标,作图-轴对称变换,旋转变换等知识,解答本题的关键是熟练掌握基本知识,属于中考常考题型.
6、(1)见解析;(2);; ;(3)5
【分析】
(1)利用轴对称的性质分别作出A,B,C的对应点A1,B1,C1即可;
(2)根据点的位置写出坐标即可;
(3)把三角形的面积看成矩形面积减去周围三个三角形面积即可.
【详解】
解:(1)如图,△A1B1C1即为所求;
(2)A1(3,4),B1(5,2),C1(2,0).
故答案为:(3,4),(5,2),(2,0);
(3)网格的单位长度为1,则=3×4-×2×3-×2×2-×1×4=5,
故答案为:5.
【点睛】
本题考查轴对称,三角形的面积等知识,解题的关键是掌握轴对称的性质,学会利用分割法求三角形面积.
7、(1);(2);(3)5
【分析】
(1)根据非负数的性质求得的值,进而求得,即可证明是等腰直角三角形,即可求得的度数;
(2)分点在轴正半轴,原点,轴负半轴三种情况,根据点的运动表示出线段长度,进而根据三角形的面积公式即可列出代数式;
(3)过点作,连接,根据四边形的面积求得,进而求得,由,设,,则,证明,进而可得,,进一步导角可得,根据等角对等边即可求得
【详解】
(1)
是等腰直角三角形,
(2)①当点在轴正半轴时,如图,
,,
,
②当点在原点时,都在轴上,不能构成三角形,则时,不存在
③当点在轴负半轴时,如图,
,,
,
综上所述:
(3)如图,过点作,连接
,
设,,则,
是等腰直角三角形
在和中
,
是等腰直角三角形
中,
,
又
【点睛】
本题考查了非负数的性质,等腰三角形的性质与判定,全等三角形的性质与判定,正确的添加辅助线是解题的关键.
8、(1)画图见解析,;(2)画图见解析,(-2,2)
【分析】
(1)根据关于y轴的点的坐标特征分别作出△ABC的各个顶点关于x轴的对称点,然后连线作图即可;
(2)利用网格特点和旋转的性质画出点A2、B、C2的坐标,然后描点即可得到△A2BC2,然后写出点A2的坐标.
【详解】
解:(1)如图,即为所求;
∵是A(2,4)关于x轴对称的点,
∴根据关于x轴对称的点的坐标特征可知:;
(2)如图,即为所求,
∴的坐标为(-2,2).
【点睛】
本题考查轴对称及旋转作图,掌握点的坐标变化规律找准图形对应点正确作图是解题关键.
9、(1)见解析;(2).
【分析】
(1)分别作A、B、C三点关于y轴的对称点A1、B1、C1,顺次连接A1、B1、C1即可得答案;
(2)用△ABC所在矩形面积减去三个小三角形面积即可得答案.
【详解】
(1)分别作A、B、C三点关于y轴的对称点A1、B1、C1,△A1B1C1即为所求;
(2)S△ABC=3×3=.
【点睛】
本题考查了作轴对称图形和运用拼凑法求不规则三角形的面积,其中掌握拼凑法求不规则图形的面积是解答本题的关键.
10、(1)图见解析;(2)图见解析.
【分析】
(1)先根据平移分别画出点,再顺次连接即可得;
(2)先根据轴对称的性质画出点,再顺次连接即可得.
【详解】
解:(1)如图,即为所求;
(2)如图,即为所求.
【点睛】
本题考查了平移作图、画轴对称图形,熟练掌握平移和轴对称的作图方法是解题关键.
相关试卷
七年级下册第十五章 平面直角坐标系综合与测试课堂检测:
这是一份七年级下册第十五章 平面直角坐标系综合与测试课堂检测,共28页。试卷主要包含了在平面直角坐标系中,点P,如图,A,若平面直角坐标系中的两点A,点P的坐标为等内容,欢迎下载使用。
沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课堂检测:
这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课堂检测,共34页。试卷主要包含了如果点P,根据下列表述,能确定位置的是,若点P等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步练习题:
这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步练习题,共31页。试卷主要包含了在平面直角坐标系xOy中,点A,已知A等内容,欢迎下载使用。