沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂检测题
展开
这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂检测题,共34页。试卷主要包含了如图,点D等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,,AC,BD相交于点O.添加一个条件,不一定能使≌的是( )
A.B.
C.D.
2、有下列说法:①轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;②等腰三角形一腰上的高与底边的夹角与顶角互余;③等腰三角形顶角的平分线是它的对称轴;④等腰三角形两腰上的中线相等.其中正确的说法有( )个.
A.1B.2C.3D.4
3、下列长度的三条线段能组成三角形的是( )
A.3 4 8B.4 4 10C.5 6 10D.5 6 11
4、如图点在同一条直线上,都是等边三角形,相交于点O,且分别与交于点,连接,有如下结论:①;②;③为等边三角形;④.其中正确的结论个数是( )
A.1个B.2个C.3个D.4个
5、已知三条线段的长分别是4,4,m,若它们能构成三角形,则整数m的最大值是( )
A.10B.8C.7D.4
6、如图,点D、E分别在∠ABC的边BA、BC上,DE⊥AB,过BA上的点F(位于点D上方)作FG∥BC,若∠AFG=42°,则∠DEB的度数为( )
A.42°B.48°C.52°D.58°
7、以下长度的三条线段,能组成三角形的是( )
A.2,3,5B.4,4,8C.3,4.8,7D.3,5,9
8、一个三角形三个内角的度数分别是x,y,z.若,则这个三角形是( )
A.等腰三角形B.等边三角形C.等腰直角三角形D.不存在
9、如图,钝角中,为钝角,为边上的高,为的平分线,则与、之间有一种等量关系始终不变,下面有一个规律可以表示这种关系,你发现的是( )
A.B.
C.D.
10、在△ABC中,∠A=50°,∠B、∠C的平分线交于O点,则∠BOC等于( )
A.65°B.80°C.115°D.50°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在△ABC中,AB=AC.在AB、AC上分别截取AP,AQ,使AP=AQ.再分别以点P,Q为圆心,以大于PQ的长为半径作弧,两弧在∠BAC内交于点R,作射线AR,交BC于点D.若BC=6,则BD的长为______________.
2、一个等腰三角形的一边长为2,另一边长为9,则它的周长是________________.
3、已知直角三角形△ABC的三条边长分别为3,4,5,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画___条.
4、如图,点D是的平分线OC上一点,过点D作交射线OA于点E,则线段DE与OE的数量关系为:DE______OE(填“>”或“=”或“<”).
5、如图,在中,,一条线段,P,Q两点分别在线段和的垂线上移动,若以A、B、C为顶点的三角形与以A、P、Q为顶点的三角形全等,则的长为_________.
三、解答题(10小题,每小题5分,共计50分)
1、如图,,,求证:.
2、如图,四边形中,,,于点.
(1)如图1,求证:;
(2)如图2,延长交的延长线于点,点在上,连接,且,求证:;
(3)如图3,在(2)的条件下,点在的延长线上,连接,交于点,连接,且,当,时,求的长.
3、如图,点D在AC上,BC,DE交于点F,,,.
(1)求证:;
(2)若,求∠CDE的度数.
4、如图,,,E为BC中点,DE平分.
(1)求证:平分;
(2)求证:;
(3)求证:.
5、如图,在中,,,,BD是的角平分线,点E在AB边上,.求的周长.
6、如图,是等边三角形,,分别交AB,AC于点D,E.
(1)求证:是等边三角形;
(2)点F在线段DE上,点G在外,,,求证:.
7、如图,在中,,,点D是内一点,连接CD,过点C作且,连接AD,BE.求证:.
8、探究与发现:如图①,在△ABC中,∠B=∠C=45°,点D在BC边上,点E在AC边上,且∠ADE=∠AED,连接DE.
(1)当∠BAD=60°时,求∠CDE的度数;
(2)当点D在BC(点B、C除外)边上运动时,试猜想∠BAD与∠CDE的数量关系,并说明理由.
(3)深入探究:如图②,若∠B=∠C,但∠C≠45°,其他条件不变,试探究∠BAD与∠CDE的数量关系.
9、如图,等边△ABC中,点D在BC上,CE=CD,∠BCE=60°,连接AD、BE.
(1)如图1,求证:AD=BE;
(2)如图2,延长AD交BE于点F,连接DE、CF,在不添加任何辅助线和其它字母的情况下,请直接写出等于120°的角.
10、中,CD平分,点E是BC上一动点,连接AE交CD于点D.
(1)如图1,若,AE平分,则的度数为______;
(2)如图2,若,,,则的度数为______;
(3)如图3,在BC的右侧过点C作,交AE延长线于点F,且,.试判断AB与CF的位置关系,并证明你的结论.
-参考答案-
一、单选题
1、C
【分析】
直接利用直角三角形全等的判定定理(定理)即可判断选项;先根据等腰三角形的性质可得,再根据三角形全等的判定定理(定理)即可判断选项;直接利用三角形全等的判定定理(定理)即可判断选项,由此即可得出答案.
【详解】
解:当添加条件是时,
在和中,,
,则选项不符题意;
当添加条件是时,
,
在和中,,
,则选项不符题意;
当添加条件是时,
在和中,,
,则选项不符题意;
当添加条件是时,不一定能使,则选项符合题意;
故选:C.
【点睛】
本题考查了三角形全等的判定、等腰三角形的性质,熟练掌握三角形全等的判定方法是解题关键.
2、B
【分析】
根据轴对称的性质,轴对称图形的概念,等腰三角形的性质判断即可.
【详解】
解:①轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线,说法正确;
②等腰三角形一腰上的高与底边的夹角与底角互余,原说法错误;
③等腰三角形的顶角平分线在它的对称轴上,原说法错误;
④等腰三角形两腰上的中线相等,说法正确.
综上,正确的有①④,共2个,
故选:B.
【点睛】
本题考查了轴对称的性质及等腰三角形的性质,掌握轴对称的性质,轴对称图形的概念,等腰三角形的性质是解题的关键.
3、C
【分析】
根据三角形的任意两边之和大于第三边对各选项分析判断求解即可.
【详解】
解:A.∵3+4<8,
∴不能组成三角形,故本选项不符合题意;
B.∵4+4<10,
∴不能组成三角形,故本选项不符合题意;
C.∵5+6>10,
∴能组成三角形,故本选项符合题意;
D.∵5+6=11,
∴不能组成三角形,故本选项不符合题意;
故选:C.
【点睛】
本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解决问题的关键.
4、D
【分析】
由SAS即可证明,则①正确;有∠CAE=∠CDB,然后证明△ACM≌△DCN,则②正确;由CM=CN,∠MCN=60°,即可得到为等边三角形,则③正确;由AD∥CE,则∠DAO=∠NEO=∠CBN,由外角的性质,即可得到答案.
【详解】
解:∵△DAC和△EBC均是等边三角形,
∴AC=CD,BC=CE,∠ACD=∠BCE=60°,
∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠BCD,∠MCN=180°-∠ACD-∠BCE=60°,
在△ACE和△DCB中,
,
∴△ACE≌△DCB(SAS),则①正确;
∴AE=BD,∠CAE=∠CDB,
在ACM和△DCN中,
,
∴△ACM≌△DCN(ASA),
∴CM=CN,;则②正确;
∵∠MCN=60°,
∴为等边三角形;则③正确;
∵∠DAC=∠ECB=60°,
∴AD∥CE,
∴∠DAO=∠NEO=∠CBN,
∴;则④正确;
∴正确的结论由4个;
故选D.
【点睛】
本题考查了等边三角形的性质与判定,全等三角形的判定与性质,平行线的性质与判定,综合性较强,但难度不是很大,准确识图找出全等三角形是解题的关键.
5、C
【分析】
根据三角形三边关系列出不等式,根据不等式的解集求整数m的最大值.
【详解】
解:条线段的长分别是4,4,m,若它们能构成三角形,则
,即
又为整数,则整数m的最大值是7
故选C
【点睛】
本题考查了求不等式的整数解,三角形三边关系,根据三角形的三边关系列出不等式是解题的关键.
6、B
【分析】
根据两直线平行,同位角相等可得,再由垂直的性质及三角形内角和定理即可得.
【详解】
解:∵,
∴,
∵,
∴,
∴,
故选:B.
【点睛】
题目主要考查平行线及垂线的性质,三角形内角和定理等,理解题意,熟练运用平行线的性质是解题关键.
7、C
【分析】
由题意根据三角形的三条边必须满足:任意两边之和大于第三边,任意两边之差小于第三边进行分析即可.
【详解】
解:A、2+3=5,不能组成三角形,不符合题意;
B、4+4=8,不能组成三角形,不符合题意;
C、3+4.8>7,能组成三角形,符合题意;
D、3+5<9,不能组成三角形,不符合题意.
故选:C.
【点睛】
本题主要考查对三角形三边关系的理解应用.注意掌握判断是否可以构成三角形,只要判断两个较小的数的和大于最大的数即可.
8、C
【分析】
根据绝对值及平方的非负性可得,,再由三角形内角和定理将两个式子代入求解可得,,即可确定三角形的形状.
【详解】
解:,
∴且,
∴,,
∴,
∵,
∴,
解得:,,
∴三角形为等腰直角三角形,
故选:C.
【点睛】
题目主要考查绝对值及平方的非负性,三角形内角和定理,等腰三角形的判定等,理解题意,列出式子求解是解题关键.
9、B
【分析】
根据三角形内角和定理、角平分线的性质、三角形外角的性质依次推理即可得出结论.
【详解】
解:由三角形内角和知∠BAC=180°-∠2-∠1,
∵AE为∠BAC的平分线,
∴∠BAE=∠BAC=(180°-∠2-∠1).
∵AD为BC边上的高,
∴∠ADC=90°=∠DAB+∠ABD.
又∵∠ABD=180°-∠2,
∴∠DAB=90°-(180°-∠2)=∠2-90°,
∴∠EAD=∠DAB+∠BAE=∠2-90°+(180°-∠2-∠1)=(∠2-∠1).
故选:B
【点睛】
本题主要考查了三角形的内角和定理,角平分线的定义、三角形外角性质及三角形的高的定义,解答的关键是找到已知角和所求角之间的联系.
10、C
【分析】
根据题意画出图形,求出∠ABC+∠ACB =130°,根据角平分线的定义得到∠CBD=∠ABC,∠ECB=∠ACB,再根据三角形内角和定理和角的代换即可求解.
【详解】
解:如图,∵∠A=50°,
∴∠ABC+∠ACB=180°-∠A=130°,
∵BD、CE分别是∠ABC、∠ACB的平分线,
∴∠CBD=∠ABC,∠ECB=∠ACB,
∴∠BOC=180°-∠CBD-∠ECB=180°-(∠CBD+∠ECB)=180°- (∠ABC+∠ACB)=180°- ×130°=115°.
故选:C
【点睛】
本题考查了三角形内角和定理,角平分线的定义,熟知三角形内角和定理,并能根据角平分线的定义进行角的代换是解题关键.
二、填空题
1、3
【分析】
根据题意依据等腰三角形的性质,即可得到BD=BC,进而分析计算即可得出结论.
【详解】
解:由题可得,AR平分∠BAC,
又∵AB=AC,
∴AD是三角形ABC的中线,
∴BD=BC=×6=3.
故答案为:3.
【点睛】
本题主要考查基本作图以及等腰三角形的性质,注意掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.
2、20
【分析】
题目给出等腰三角形有两条边长为2和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.
【详解】
解:分两种情况:当腰为2时,2+2<9,所以不能构成三角形;
当腰为9时,2+9>9,所以能构成三角形,周长是:2+9+9=20.
故答案为:20.
【点睛】
本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.
3、6
【分析】
根据等腰三角形的性质分别利用AB,AC为底以及为腰得出符合题意的图形即可.
【详解】
解:如图所示:
当BC2=CC2,AC1=AC,BC=BC3,BC=CC4,BC=CC5,C6A=C6B都能得到符合题意的等腰三角形.
故答案为:6.
【点睛】
此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.
4、=
【分析】
首先由平行线的性质求得∠EDO=∠DOB,然后根据角平分线的定义求得∠EOD=∠DOB,最后根据等腰三角形的判定和性质即可判断.
【详解】
解:∵ED∥OB,
∴∠EDO=∠DOB,
∵D是∠AOB平分线OC上一点,
∴∠EOD=∠DOB,
∴∠EOD=∠EDO,
∴DE=OE,
故答案为:=.
【点睛】
本题主要考查的是平行线的性质、角平分线的定义以及等角对等边,根据平行线的性质和角平分线的定义求得∠EOD=∠EDO是解题的关键.
5、6cm或12cm
【分析】
先根据题意得到∠BCA=∠PAQ=90°,则以A、B、C为顶点的三角形与以A、P、Q为顶点的三角形全等,只有△ACB≌△QAP和△ACB≌△PAQ两种情况,由此利用全等三角形的性质求解即可.
【详解】
解:∵AX是AC的垂线,
∴∠BCA=∠PAQ=90°,
∴以A、B、C为顶点的三角形与以A、P、Q为顶点的三角形全等,只有△ACB≌△QAP和△ACB≌△PAQ两种情况,
当△ACB≌△QAP,
∴;
当△ACB≌△PAQ,
∴,
故答案为:6cm或12cm.
【点睛】
本题主要考查了全等三角形的性质,熟知全等三角形的性质是解题的关键.
三、解答题
1、证明过程见解析
【分析】
先证明,得到,,再证明,即可得解;
【详解】
由题可得,在和中,
,
∴,
∴,,
又∵,
∴,
在和中,
,
∴,
∴.
【点睛】
本题主要考查了全等三角形的判定与性质,准确分析证明是解题的关键.
2、(1)见解析;(2)见解析;(3)2
【分析】
(1)过点B作于点Q,根据AAS证明△得,再证明四边形是矩形得BQ=CG,从而得出结论;
(2) 在GF上截取GH=GE,连接AH,证明AH=FH,GE=GH即可;
(3) 过点A作于点P,在FC上截取,连接,证明得,可证明AC是EH的垂直平分线,再证明和△得可求出,从而可得结论.
【详解】
解:(1)证明:过点B作于点Q,如图1
∵
又,
∴△
∴四边形是矩形
;
(2)在GF上截取GH=GE,连接AH,如图2,
又
(3)过点A作于点P,在FC上截取,连接,如图3,
由(1)、(2)知,,
∵
∴
∵
∴
∴
∴∠
∵
∴∠
∴
∵
∴∠
∴
∴AC是EH的垂直平分线,
∴
∴
又∵
∴
∴∠
∴∠
∵∠,
∴∠
∴
∵
∴
∴
∵∠
∴,即
∴
∵,即
∴
在和中,
AH=AM∠HAB=∠MADAB=AD
∴△
∴
∴
∴
∴
【点睛】
本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.
3、
(1)证明见解析;
(2)∠CDE=20°.
【分析】
(1)由“SAS”可证△ABC≌△DBE;
(2)由全等三角形的性质可得∠C=∠E,由三角形的外角性质可求解.
(1)
证明:∵∠ABD=∠CBE,
∴∠ABD+∠DBC=∠CBE+∠DBC,
即:∠ABC=∠DBE,
在△ABC和△DBE中,
,
∴△ABC≌△DBE(SAS);
(2)
解:由(1)可知:△ABC≌△DBE,
∴∠C=∠E,
∵∠DFB=∠C+∠CDE,
∠DFB=∠E+∠CBE,
∴∠CDE=∠CBE,
∵∠ABD=∠CBE=20°,
∴∠CDE=20°.
【点睛】
本题考查了全等三角形的判定和性质,三角形的外角性质,证明三角形全等是解题的关键.
4、(1)见解析;(2)见解析;(3)见解析
【分析】
(1)延长DE交AB延长线于F,由∠B=∠C=90°,推出AB∥CD,则∠CDE=∠F,再由DE平分∠ADC,即可推出∠ADF=∠F,得到AD=AF,即△ADF是等腰三角形,然后证明△CDE≌△BFE得到DE=FE,即E是DF的中点,即可证明AE平分∠BAD;
(2)由(1)即可用三线合一定理证明;
(3)由△CDE≌△BFE,得到CD=BF,则AD=AF=AB+BF=AB+CD.
【详解】
解:(1)如图所示,延长DE交AB延长线于F,
∵∠B=∠C=90°,
∴AB∥CD,
∴∠CDE=∠F,
∵DE平分∠ADC,
∴∠CDE=∠ADE,
∴∠ADF=∠F,
∴AD=AF,
∴△ADF是等腰三角形,
∵E是BC的中点,
∴CE=BE,
∴△CDE≌△BFE(AAS),
∴DE=FE,
∴E是DF的中点,
∴AE平分∠BAD;
(2)由(1)得△ADF是等腰三角形,AD=AF,E是DF的中点,
∴AE⊥DE;
(3)∵△CDE≌△BFE,
∴CD=BF,
∴AD=AF=AB+BF=AB+CD.
【点睛】
本题主要考查了平行线的性质与判定,全等三角形的性质与判定,等腰三角形的性质与判定,熟知相关知识是解题的关键.
5、
【分析】
由题意结合角平分线性质和全等三角形判定得出,进而依据的周长进行求解即可.
【详解】
解:∵,,,
∴,
∵BD是的角平分线,
∴,
在和中,
,
∴,
∴,
∵,
∴的周长.
【点睛】
本题考查全等三角形的判定与性质以及角平分线性质,熟练掌握利用全等三角形的判定与性质以及角平分线性质进行边的等量替换是解题的关键.
6、(1)见详解;(2)见详解
【分析】
(1)由题意易得,然后根据平行线的性质可得,进而问题可求证;
(2)连接AG,由题意易得AB=AC,然后可知△ABF≌△ACG,则有AF=AG,进而可得∠FAG=60°,最后问题可求证.
【详解】
证明:(1)∵是等边三角形,
∴,
∵DE∥BC,
∴,
∴,
∴是等边三角形;
(2)连接AG,如图所示:
∵是等边三角形,
∴,AB=AC,
∵,,
∴△ABF≌△ACG(SAS),
∴,
∵,
∴,
∴是等边三角形,
∴.
【点睛】
本题主要考查全等三角形及等边三角形的性质与判定,熟练掌握全等三角形及等边三角形的性质与判定是解题的关键.
7、证明见解析.
【分析】
先根据角的和差可得,再根据三角形全等的判定定理证出,然后根据全等三角形的性质即可得证.
【详解】
证明:,
,
,
,
,
在和中,,
,
.
【点睛】
本题考查了三角形全等的判定定理与性质等知识点,熟练掌握三角形全等的判定方法是解题关键.
8、(1)30°;(2)∠BAD=2∠CDE,理由见解析;(3)∠BAD=2∠CDE.
【分析】
(1)根据三角形的外角的性质求出∠ADC,结合图形计算即可;
(2)设∠BAD=x,根据三角形的外角的性质求出∠ADC,结合图形计算即可;
(3)设∠BAD=x,仿照(2)的解法计算.
【详解】
解:(1)∵∠ADC是△ABD的外角,
∴∠ADC=∠BAD+∠B=105°,
∠DAE=∠BAC﹣∠BAD=30°,
∴∠ADE=∠AED=75°,
∴∠CDE=105°﹣75°=30°;
(2)∠BAD=2∠CDE,
理由如下:设∠BAD=x,
∴∠ADC=∠BAD+∠B=45°+x,
∠DAE=∠BAC﹣∠BAD=90°﹣x,
∴∠ADE=∠AED=,
∴∠CDE=45°+x﹣=x,
∴∠BAD=2∠CDE;
(3)设∠BAD=x,
∴∠ADC=∠BAD+∠B=∠B+x,
∠DAE=∠BAC﹣∠BAD=180°﹣2∠C﹣x,
∴∠ADE=∠AED=∠C+x,
∴∠CDE=∠B+x﹣(∠C+x)=x,
∴∠BAD=2∠CDE.
【点睛】
本题考查了三角形内角和和外角的性质,解题关键是熟练掌握三角形内角和和外角性质,通过设参数计算,发现角之间的关系
9、(1)见解析;(2)等于120°的角有∠BFC、∠BDE、∠DFE=120°.
【分析】
(1)利用SAS证明△ADC≌△BEC,即可证明AD=BE;
(2)证明△CDE为等边三角形,可求得∠BDE=120°;利用全等三角形的性质可求得∠BFD=∠BCA=60°,推出∠DFE=120°;同理可推出∠BFC=∠AFC+∠BFD=120°.
【详解】
(1)证明:等边△ABC中,CA=CB,∠ACB=60°,
∵CE=CD,∠BCE=60°,
∴△ADC≌△BEC(SAS),
∴AD=BE;
(2)等于120°的角有∠BFC、∠BDE、∠DFE=120°.
∵CE=CD,∠BCE=60°,
∴△CDE为等边三角形,
∴∠CDE=60°,
∴∠BDE=120°;
∵△ADC≌△BEC,
∴∠DAC=∠EBC,
又∠BDF=∠ADC,
∴∠BFD=∠BCA=60°,
∴∠DFE=120°;
同理可求得∠AFC=∠ABC=60°,
∴∠BFC=∠AFC+∠BFD=120°;
综上,等于120°的角有∠BFC、∠BDE、∠DFE=120°.
【点睛】
本题考查了全等三角形的判定和性质,等边三角形的判定和性质,熟记各图形的性质并准确识图是解题的关键.
10、(1)40°;(2)10°;(3)AB∥CF,理由见解析
【分析】
(1)根据三角形的角和定理和角平分线的定义可求得∠BAC+∠ACB=140°即可求解;
(2)根据三角形的外角性质求得∠B+∠BAE=47°即可求解;
(3)延长AC到G,根据等腰三角形的性质和三角形的外角性质得到∠FCG=2∠F,再根据角平分线的定义和等角的余角相等得到∠BCF=2∠F,则有∠B=∠BCF,根据平行线在判定即可得出结论.
【详解】
解:(1)∵∠ADC=110°,
∴∠DAC+∠DCA=180°-110°=70°,
∵AE平分∠BAC,CD平分∠ACB,
∴∠BAC=2∠DAC,∠ACB=2∠DCA,
∴∠BAC+∠ACB=2(∠DAC+∠DCA)=140°,
∴∠B=180°-(∠BAC+∠ACB)=180°-140°=40°,
故答案为:40°;
(2)∵∠ADC=∠DCE+∠DEC=100°,∠DCE=53°,
∴∠DEC=100°-53°=47°,
∴∠B+∠BAE=∠DEC=47°,
∵∠B-∠BAE=27°,
∴∠BAE=10°,
故答案为:10°;
(3)AB∥CF,理由为:
如图,延长AC到G,
∵AC=CF,
∴∠F=∠FAC,
∴∠FCG=∠F+∠FAC=2∠F,
∵CF⊥CD,
∴∠BCF+∠BCD=90°,∠FCG+∠ACD=90°,
∵CD平分∠ACB,
∴∠BCD=∠ACD,
∴∠BCF=∠FCG=2∠F,
∵∠B=2∠F,
∴∠B=∠BCF,
∴AB∥CF.
【点睛】
本题考查角平分线的定义、三角形的内角和定理、三角形的外角性质、等腰三角形的性质、等角的余角相等、平行线的判定,熟练掌握相关知识的联系与运用是解答的关键.
相关试卷
这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试复习练习题,共34页。试卷主要包含了下列叙述正确的是等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步训练题,共36页。试卷主要包含了如图,在中,AD,如图,点D等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试随堂练习题,共30页。试卷主要包含了已知,下列四个命题是真命题的有,定理等内容,欢迎下载使用。