终身会员
搜索
    上传资料 赚现金

    难点解析沪教版(上海)七年级数学第二学期第十二章实数月考练习题(精选)

    立即下载
    加入资料篮
    难点解析沪教版(上海)七年级数学第二学期第十二章实数月考练习题(精选)第1页
    难点解析沪教版(上海)七年级数学第二学期第十二章实数月考练习题(精选)第2页
    难点解析沪教版(上海)七年级数学第二学期第十二章实数月考练习题(精选)第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)七年级下册第十二章 实数综合与测试练习

    展开

    这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试练习,共20页。试卷主要包含了有一个数值转换器,原理如下,若,则的值为,若,则整数a的值不可能为,下列各数中,最小的数是,在以下实数等内容,欢迎下载使用。


    沪教版(上海)七年级数学第二学期第十二章实数月考

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、下列各数是无理数的是(   

    A.-3 B. C.2.121121112 D.

    2、下列说法正确的是(  )

    A.一个数的立方根有两个,它们互为相反数

    B.负数没有立方根

    C.任何数的立方根都只有一个

    D.如果一个数有立方根,那么这个数也一定有平方根

    3、下列四个数中,最小的数是(   

    A.﹣3 B.﹣ C.0 D.﹣π

    4、有一个数值转换器,原理如下:当输入的x为64时,输出的y是(   

    A. B.2 C. D.

    5、在实数|﹣3.14|,﹣3,﹣,﹣π中,最小的数是(  )

    A.﹣ B.﹣3 C.|﹣3.14| D.﹣π

    6、若,则的值为(  

    A. B. C. D.

    7、若,则整数a的值不可能为(   

    A.2 B.3 C.4 D.5

    8、下列各数中,最小的数是(   

    A.0 B. C. D.﹣3

    9、在以下实数:﹣π,3.1411,8,0.020020002…中,无理数有(  )

    A.2个 B.3个 C.4个 D.5个

    10、若关于x的方程(k2﹣9)x2+(k﹣3)xk+6是一元一次方程,则k的值为(  )

    A.9 B.﹣3 C.﹣3或3 D.3

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、已知432=1849,442=1936,452=2025,462=2116,若n为整数,且nn+1,则n的值为 _____.

    2、比较大小:______3(填“>”、“<”或“=”).

    3、已知xy满足关系式=0,则xy的算术平方根为______.

    4、若一个正数的平方根是3x+2和5x-10,则这个数是____________.

    5、若实数满足,则=_____________.

    三、解答题(10小题,每小题5分,共计50分)

    1、计算:

    2、已知xy满足,求xy的值.

    3、计算:+++

    4、解答下列各题:

    (1)计算:

    (2)分解因式:

    5、如图:在数轴上A点表示数aB点表示数bC点表示数c,且ab满足|a+3|+(b﹣9)2=0,c=1.

    (1)a     b     

    (2)点P为数轴上一动点,其对应的数为x,则当x     时,代数式|xa|﹣|xb|取得最大值,最大值为      

    (3)点P从点A处以1个单位/秒的速度向左运动;同时点Q从点B处以2个单位/秒的速度也向左运动,在点Q到达点C后,以原来的速度向相反的方向运动,设运动的时间为tt≤8)秒,求第几秒时,点PQ之间的距离是点BQ之问距离的2倍?

    6、计算:(1)

    (2)

    7、求下列各式中的值:

    (1)                        (2)

    8、计算:

    9、计算题

    (1)

    (2)(﹣1)2021

    10、计算题:

    (1)

    (2)

     

    -参考答案-

    一、单选题

    1、D

    【分析】

    根据无理数的定义:无限不循环小数统称为无理数,判断上面四个数是否为无理数即可.

    【详解】

    A、-3是整数,属于有理数.

    B、是分数,属于有理数.

    C、2.121121112是有限小数,属于有理数.

    D、是无限不循环小数,属于无理数.

    故选:D.

    【点睛】

    本题主要是考察无理数的概念,初中数学中常见的无理数主要是:等;开方开不尽的数;以及像1.12112111211112…,等有规律的数.

    2、C

    【分析】

    利用立方根的意义对每个选项的说法进行逐一判断即可,其中判断D还要结合平方根的含义.

    【详解】

    解:∵一个正数有一个正的立方根,一个负数有一个负的立方根,0的立方根是0,

    ∴A选项说法不正确;

    ∵一个负数有一个负的立方根,

    ∴B选项说法不正确;

    ∵一个正数有一个正的立方根,一个负数有一个负的立方根,0的立方根是0,

    ∴C选项说法正确;

    ∵一个负数有一个负的立方根,但负数没有平方根,

    ∴D选项说法不正确.

    综上,说法正确的是C选项,

    故选:C.

    【点睛】

    本题考查的是立方根的含义,考查一个正数有一个正的立方根,一个负数有一个负的立方根,0的立方根是0,同时考查负数没有平方根,熟悉以上基础知识是解本题的关键.

    3、D

    【分析】

    正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断出各数中最小的是哪个即可.

    【详解】

    解:∵

    ∴最小的数是

    故选D.

    【点睛】

    此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.

    4、C

    【分析】

    直接利用立方根以及算术平方根、无理数分析得出答案.

    【详解】

    解:由题意可得:64的立方根为4,4的算术平方根是2,2的算术平方根是

    故选:C.

    【点睛】

    本题主要考查了立方根以及算术平方根、无理数的定义,解题的关键是正确掌求一个数的算术平方根.

    5、D

    【分析】

    把数字从大到小排序,然后再找最小数.

    【详解】

    解:|﹣3.14|=3.14.|﹣3|=3,|-|=,|﹣π|=π.

    ∴﹣π<﹣3<﹣<|﹣3.14|,

    故选:D

    【点睛】

    本题考查实数大小比较,掌握比较方法是本题关键.

    6、C

    【分析】

    化简后利用平方根的定义求解即可.

    【详解】

    解:∵

    x2-9=55,

    x2=64,

    x=±8,

    故选C.

    【点睛】

    本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,正数有两个不同的平方根,它们是互为相反数,0的平方根是0,负数没有平方根.

    7、D

    【分析】

    首先确定的范围,然后求出整式a可能的值,判断求解即可.

    【详解】

    解:∵,即,即

    又∵

    ∴整数a可能的值为:2,3,4,

    ∴整数a的值不可能为5,

    故选:D.

    【点睛】

    此题考查了无理数的估算,解题的关键是熟练掌握无理数的估算方法.

    8、C

    【分析】

    有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.

    【详解】

    解:

    所给的各数中,最小的数是

    故选:C.

    【点睛】

    本题主要考查了有理数大小比较的方法,解题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.

    9、B

    【分析】

    根据“无限不循环的小数是无理数”可直接进行排除选项.

    【详解】

    解:∵

    ∴在以下实数:﹣π,3.1411,8,0.020020002…中,无理数有﹣π,0.020020002…;共3个;

    故选B.

    【点睛】

    本题主要考查算术平方根及无理数,熟练掌握求一个数的算术平方根及无理数的概念是解题的关键.

    10、B

    【分析】

    含有一个未知数,且未知数的最高次数是1,这样在整式方程是一元一次方程,根据定义列方程与不等式,从而可得答案.

    【详解】

    解: 关于x的方程(k2﹣9)x2+(k﹣3)xk+6是一元一次方程,

    由①得:

    由②得:

    所以:

    故选B

    【点睛】

    本题考查的是一元一次方程的应用,利用平方根的含义解方程,掌握“一元一次方程的定义”是解本题的关键.

    二、填空题

    1、44

    【分析】

    由已知条件的提示可得,即,从而可得答案.

    【详解】

    解:

    又∵n为整数,

    故答案为:44.

    【点睛】

    本题考查的是无理数的估算,掌握无理数的估算方法是解题的关键.

    2、<

    【分析】

    ,再利用不等式的基本性质可得,从而可得答案.

    【详解】

    解:∵

    故答案为:<.

    【点睛】

    本题考查的是实数的大小比较,掌握实数的大小比较的方法是解题的关键.

    3、4

    【分析】

    直接利用算术平方根以及偶次方的性质得出xy的值,进而得出答案.

    【详解】

    解:∵

    x+4=0,y-2=0,

    解得:x=-4,y=2,

    xy=(-4)2=16,16的算术平方根是:4.

    故答案为:4.

    【点睛】

    本题主要考查了算术平方根以及偶次方的性质,正确得出xy的值是解题关键.

    4、25

    【分析】

    根据正数的平方根有2个,且互为相反数列出方程,求出方程的解得到的值,即可得到这个正数.

    【详解】

    解:根据题意得:

    解得:

    则这个数为25,

    故答案为:25.

    【点睛】

    本题考查了平方根,熟练掌握平方根的定义是解本题的关键.

    5、1

    【分析】

    根据绝对值与二次根式的非负性求出ab的值,故可求解.

    【详解】

    解:∵

    a-2=0,b-4=0

    a=2,b=4

    =

    故答案为:1.

    【点睛】

    此题主要考查代数式求值,解题的关键是熟知非负性的运用.

    三、解答题

    1、-10

    【分析】

    根据正整数指数幂的意义、零指数幂的意义以及绝对值、有理数的乘方运算.

    【详解】

    解:

    【点睛】

    本题考查实数的运算,解题的关键熟练运用零指数幂的意义、正整数指数幂的意义、有理数的乘方以及绝对值.

    2、x=5;y=2

    【分析】

    根据非负数的性质可得关于xy的方程组,求解可得其值;

    【详解】

    解:由题意可得

    联立得

    解方程组得:

    xy的值分别为5、2.

    【点睛】

    此题考查的是非负数的性质,解二元一次方程组,掌握绝对值及算术平方根的非负性是解决此题的关键.

    3、

    【分析】

    先化简绝对值、计算算术平方根与立方根,再计算实数的加减法即可得.

    【详解】

    解:原式

    【点睛】

    本题考查了算术平方根与立方根、实数的加减等知识点,熟练掌握各运算法则是解题关键.

    4、(1)①;②;(2)

    【分析】

    (1)①原式利用算术平方根、立方根性质,乘方的意义,以及绝对值的代数意义计算即可得到结果;②根据幂的乘方与积的乘方以及同底数幂的乘法法则进行计算,再进行合并同类项合并即可;

    (2)原式提取公因式x,再利用完全平方公式分解即可.

    【详解】

    解:(1)①

    (2)

    【点睛】

    此题考查了实数的运算、整式的乘除运算以及提公因式法与公式法的综合运用的知识点,熟练掌运算以及相关法则、方法是解本题的关键.

    5、(1)﹣3,9;(2)≥9,12;(3)秒或秒.

    【分析】

    (1)由|a+3|+(b﹣9)2=0,根据非负数的性质得|a+3|=0,(b﹣9)2=0,即可求出a=﹣3、b=9;

    (2)由(1)得a=﹣3、b=9,则代数式|xa|﹣|xb|即代数式|x+3|﹣|x﹣9|,按x<﹣3、﹣3≤x<9及x≥9分类讨论,分别求出相应的代数式的值或范围,再确定代数式的最大值;

    (3)先由点C表示的数是1,点B表示的数是9,计算出BC两点之间的距离,确定t的取值范围,再按t的不同取值范围分别求出相应的t的值即可.

    【详解】

    解:(1)∵|a+3|≥0,(b﹣9)2≥0,且|a+3|+(b﹣9)2=0,

    ∴|a+3|=0,(b﹣9)2=0,

    a=﹣3,b=9,

    故答案为:﹣3,9.

    (2)∵a=﹣3,b=9,

    ∴代数式|xa|﹣|xb|即代数式|x+3|﹣|x﹣9|,

    x<﹣3时,|x+3|﹣|x﹣9|=﹣(x+3)﹣(9﹣x)=﹣12;

    当﹣3≤x<9时,|x+3|﹣|x﹣9|=x+3﹣(9﹣x)=2x﹣6,

    ∵﹣12≤2x﹣6<12,

    ∴﹣12≤|x+3|﹣|x﹣9|<12;

    x≥9时,|x+3|﹣|x﹣9|=x+3﹣(x﹣9)=12,

    综上所述,|x+3|﹣|x﹣9|的最大值为12,

    故答案为:≥9,12.

    (3)∵点C表示的数是1,点B表示的数是9,

    BC两点之间的距离是9﹣1=8,

    当点Q与点C重合时,则2t=8,

    解得t=4,

    当0<t≤4时,如图1,点P表示的数是﹣3﹣t,点Q表示的数是9﹣2t

    根据题意得9﹣2t﹣(﹣3﹣t)=2×2t

    解得t

    当4<t≤8时,如图2,点P表示的数仍是﹣3﹣t

    ∵1+(2t﹣8)=2t﹣7,

    ∴点Q表示的数是2t﹣7,

    根据题意得2t﹣7﹣(﹣3﹣t)=2(16﹣2t),

    解得t

    综上所述,第秒或第秒,点PQ之间的距离是点BQ之间距离的2倍.

    【点睛】

    本题考查数轴、数轴上两点间的距离,一元一次方程的应用、绝对值的几何意义等知识,是重要考点,难度一般,掌握相关知识是解题关键.

    6、(1);(2).

    【分析】

    (1)由题意利用算术平方根和立方根的性质进行化简计算即可;

    (2)由题意先去绝对值,进而进行算术平方根的加减运算即可.

    【详解】

    解:(1)

    (2)

    【点睛】

    本题考查实数的运算,熟练掌握并利用算术平方根和立方根的性质进行化简是解题的关键.

    7、(1);(2)

    【分析】

    (1)把原方程化为,再利用立方根的含义解方程即可;

    (2)直接利用平方根的含义把原方程化为,再解两个一次方程即可.

    【详解】

    解:(1)

    解得:

    (2)

    解得:

    【点睛】

    本题考查的是利用立方根的含义与平方根的含义解方程,掌握“立方根与平方根的含义”是解本题的关键.

    8、

    【分析】

    分别计算乘方运算,零次幂,算术平方根,负整数指数幂,再合并即可.

    【详解】

    解:原式

    【点睛】

    本题考查的是零次幂的含义,求解一个数的算术平方根,负整数指数幂的含义,掌握以上基础运算是解题的关键.

    9、(1)2+2;(2)4

    【分析】

    (1)原式利用立方根性质及绝对值的代数意义化简,合并即可得到结果;

    (2)原式利用乘方的意义,算术平方根定义计算即可得到结果.

    【详解】

    解:(1)原式=2﹣2+|﹣4|

    =2﹣2+4

    =2+2;

    (2)原式=﹣1+5

    =4.

    【点睛】

    本题考查了实数的混合运算,正确的求得立方根和算术平方根是解题的关键.

    10、

    (1)

    (2)

    【分析】

    (1)先用同底数幂、幂的乘方、积的乘方运算,然后再合并即可;

    (2)先运用算术平方根、负整数次幂、绝对值、零次幂的知识化简各数,然后再计算即可.

    (1)

    解:原式=

    (2)

    解:原式=

    【点睛】

    本题主要考查了整式的运算、实数的运算等知识点,灵活运用相关运算法则成为解答本题的关键.

     

    相关试卷

    沪教版 (五四制)七年级下册第十二章 实数综合与测试课后作业题:

    这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试课后作业题,共19页。试卷主要包含了下列运算正确的是,下列四个数中,最小的数是,三个实数,2,之间的大小关系,下列说法正确的是,下列说法中正确的有等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试综合训练题:

    这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试综合训练题

    2020-2021学年第十二章 实数综合与测试测试题:

    这是一份2020-2021学年第十二章 实数综合与测试测试题,共23页。试卷主要包含了下列四个数中,最小的数是,下列各数中,比小的数是,下列说法中,正确的是,下列运算正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map