终身会员
搜索
    上传资料 赚现金

    难点解析沪教版(上海)七年级数学第二学期第十二章实数专项练习试题(无超纲)

    立即下载
    加入资料篮
    难点解析沪教版(上海)七年级数学第二学期第十二章实数专项练习试题(无超纲)第1页
    难点解析沪教版(上海)七年级数学第二学期第十二章实数专项练习试题(无超纲)第2页
    难点解析沪教版(上海)七年级数学第二学期第十二章实数专项练习试题(无超纲)第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)七年级下册第十二章 实数综合与测试巩固练习

    展开

    这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试巩固练习,共19页。试卷主要包含了下列各式中,化简结果正确的是,16的平方根是,若 ,则,观察下列算式等内容,欢迎下载使用。


    沪教版(上海)七年级数学第二学期第十二章实数专项练习

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、在0.1010010001…(相邻两个1之间依次多一个0),中,无理数有(   

    A.1个 B.2个 C.3个 D.4个

    2、下列运算正确的是(  )

    A. B. C. D.

    3、对于两个有理数,定义一种新的运算:,若,则的值为(  

    A. B. C. D.

    4、下列各式中,化简结果正确的是(   

    A. B. C. D.

    5、在3.14,中,无理数有(     

    A.1个 B.2个 C.3个 D.4个

    6、16的平方根是(  )

    A.±8 B.8 C.4 D.±4

    7、若 ,则   

    A. B. C. D.

    8、观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…根据上述算式中的规律,你认为2810的末位数字是(  )

    A.2 B.4 C.8 D.6

    9、下列各数中,3.1415,,0.321,π,2.32232223…(相邻两个3之间的2的个数逐次增加1),无理数有(   

    A.0个 B.1个 C.2个 D.3个

    10、如果一个正数a的两个不同平方根是2x-2和6-3x,则这个正数a的值为(   

    A.4 B.6 C.12 D.36

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、如图,ABC在数轴上对应的点分别为a,﹣1,,其中a<﹣1,且ABBC,则|a|=_____.

    2、已知两个实数在数轴上的对应点如上图所示:请你用“”或“”完成填空:

    (1)________;(2)________ ;(3)________

    (4)________;(5)________;(6)________

    3、比较大小:_____2(填“>”或“<”或“=”)

    4、在实数范围内分解因式:a2﹣3b2=_____.

    5、计算:__________.

    三、解答题(10小题,每小题5分,共计50分)

    1、已知:,求x+17的算术平方根.

    2、计算下列各题:

    (1)

    (2)

    (3)

    3、计算:

    4、求下列各式中x的值.

    (1)x-3)3=4

    (2)9(x+2)2=16

    5、(1)计算:

    (2)分解因式:

    6、计算

    (1)

    (2)

    7、解方程,求x的值.

    (1)                    

    (2)

    8、已知是正数的两个平方根,且,求值,及的值.

    9、计算:.

    10、已知abcd是有理数,对于任意,我们规定:

    例如:

    根据上述规定解决下列问题:

    (1)_________;

    (2)若,求的值;

    (3)已知,其中是小于10的正整数,若x是整数,求的值.

     

    -参考答案-

    一、单选题

    1、B

    【分析】

    无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.

    【详解】

    解:0.1010010001…(相邻两个1之间依次多一个0),是无限不循环小数,是无理数;

    是有理数;

    是有理数;

    是无理数;

    ∴无理数有2个,

    故选B.

    【点睛】

    本题主要考查了无理数的定义,解题的关键在于能够熟练掌握有理数和无理数的定义.

    2、B

    【分析】

    依据算术平方根的性质、立方根的性质、乘方法则、绝对值的性质进行化简即可.

    【详解】

    A、,故A错误;

    B、,故B正确;

    C.,故C错误;

    D.−|-2|=-2,故D错误.

    故选:B.

    【点睛】

    本题主要考查的是算术平方根的性质、立方根的性质、乘方运算法则、绝对值的性质,熟练掌握相关知识是解题的关键.

    3、D

    【分析】

    根据新定义的运算法则得到,求解的值,再按照新定义对进行运算即可.

    【详解】

    解:

    解得:

    故选D

    【点睛】

    本题考查的是新定义运算,完全平方公式的应用,负整数指数幂的含义,理解新定义,按照新定义的运算法则进行运算是解本题的关键.

    4、D

    【分析】

    根据实数的运算法则依次对选项化简再判断即可.

    【详解】

    A,化简结果错误,与题意不符,故错误.

    B,化简结果错误,与题意不符,故错误.

    C,化简结果错误,与题意不符,故错误.

    D,化简结果正确,与题意相符,故正确.

    故选:D   

    【点睛】

    本题考查了实数的运算,解题的关键是熟练掌握实数的混合运算法则.

    5、C

    【分析】

    分别根据无理数、有理数的定义即可判定选择项.

    【详解】

    解:3.14是有理数,是无理数,是无理数,是有理数,是有理数,是无理数,是有理数,是有理数;

    ∴无理数有三个,

    故选C.

    【点睛】

    此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.

    6、D

    【分析】

    根据平方根可直接进行求解.

    【详解】

    解:∵(±4)2=16,

    ∴16的平方根是±4.

    故选:D.

    【点睛】

    本题主要考查平方根,熟练掌握求一个数的平方根是解题的关键.

    7、B

    【分析】

    先利用的值,求出,再利用负整数指数幂的运算法则,得到的值.

    【详解】

    解:

    (舍去),

    故选:B.

    【点睛】

    本题主要是考查了开二次根式以及负整数指数幂的运算法则,熟练掌握负整数指数幂的运算法则:,是解决本题的关键.

    8、B

    【分析】

    经过观察如果2的次数除以4,余数为1,那末尾数就是2;如果余数是2,那末尾数是4;如果余数为3,那末尾数是8;如果余数是0,那末尾数是6.用810÷4=202…2,余数是2故可知,末尾数是4.

    【详解】

    2n的个位数字是2,4,8,6循环,

    所以810÷4=202…2,

    则2810的末位数字是4.

    故选:B

    【点睛】

    本题考查了与实数运算相关的规律题,找到2n的末位数的循环规律是解题的关键.

    9、D

    【分析】

    理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.

    【详解】

    3.1415,0.321是有限小数,属于有理数;

    是分数,属于有理数;

    无理数有,π,2.32232223…(相邻两个3之间的2的个数逐次增加1),共3个.

    故选:D.

    【点睛】

    此题考查了无理数.解题的关键是掌握实数的分类.

    10、D

    【分析】

    根据正数平方根有两个,它们是互为相反数,可列方程2x-2+6-3x=0,解方程即可.

    【详解】

    解:∵一个正数a的两个不同平方根是2x-2和6-3x

    ∴2x-2+6-3x=0,

    解得:x=4,

    ∴2x-2=2×4-2=8-2=6,

    ∴正数a=62=36.

    故选择D.

    【点睛】

    本题考查平方根性质,一元一次方程,掌握正数有两个平方根,它们是互为相反数,零的平方根是零,负数没有平方根是解题关键.

    二、填空题

    1、

    【分析】

    先根据数轴上点的位置求出,即可得到,由此求解即可.

    【详解】

    解:∵ABC在数轴上对应的点分别为a,﹣1,

    故答案为:

    【点睛】

    本题主要考查了实数与数轴,解题的关键在于能够根据题意求出

    2、<                       

    【分析】

    根据数轴可知:b>0,a<0,根据绝对值的非负性得|a|>|b|,即可得.

    【详解】

    解: ∵由数轴可知:b>0,a<0,|a|>|b|,

    ∴(1)a<b,(2)|a|>|b|,(3)a+b<0,

    (4)ba>0,(5)a+b>ab,(6)

    故答案为:(1)<;(2)>;(3)<;(4)>;(5)>;(6)<.

    【点睛】

    本题考查了数轴与实数,绝对值的非负性,解题的关键是掌握绝对值的非负性.

    3、>

    【分析】

    根据即可得出答案.

    【详解】

    故答案为:>.

    【点睛】

    本题主要考查的是比较实数的大小,熟练掌握相关知识是解题的关键.

    4、(a+)(aa)(a+

    【分析】

    根据平方差公式因式分解,运用2次,注意分解要彻底

    【详解】

    a2﹣3b2

    a2﹣(2

    =(a+)(a).

    【点睛】

    本题考查了根据平方差公式因式分解,实数,解题的关键是注意在实数范围内分解要彻底.

    5、2

    【分析】

    直接利用立方根、绝对值化简得出答案.

    【详解】

    解:原式

    故答案为:2.

    【点睛】

    本题主要考查了实数的运算,解题的关键是正确化简.

    三、解答题

    1、3

    【分析】

    首先根据,求出x的值,然后代入x+17求解算术平方根即可.

    【详解】

    解:∵

    ∴5x+32=-8,

    解得:x=-8,

    x+17=-8+17=9,

    ∵9的算术平方根为3,

    x+17的算术平方根为 3,

    故答案为:3.

    【点睛】

    此题考查了立方根的概念,求解算数平方根,解题的关键是熟练掌握立方根和算术平方根的概念.

    2、

    (1)-3

    (2)-6x

    (3)4y-3xz

    【分析】

    (1)先化简零指数幂,负整数指数幂,有理数的乘方,绝对值,然后再计算;

    (2)先利用积的乘方运算法则计算乘方,然后利用整式乘除法运算法则从左往右依次计算.

    (3)根据多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.

    (1)

    解:原式

    (2)

    解:原式

    (3)

    解:

    【点睛】

    本题考查整式的混合运算,负整数指数幂,零指数幂,掌握积的乘方(abn=anbn运算法则,整式的除法,理解a0=1(a≠0),a≠0),牢记法则是解题关键.

    3、

    【分析】

    先运用零指数幂、负整数指数幂、乘方、绝对值化简原式,然后再计算即可.

    【详解】

    解:原式=1-8+4+

    =

    【点睛】

    本题考查了零指数幂、负整数指数幂、绝对值、实数的加减法等知识点,熟练掌握各运算法则是解答本题的关键.

    4、(1)x=5;(2)x=-x=

    【分析】

    (1)把x-3可做一个整体求出其立方根,进而求出x的值;

    (2)把x+2可做一个整体求出其平方根,进而求出x的值.

    【详解】

    解:(1) (x−3)3=4,

    x-3)3=8,

    x-3=2,

    x=5;

    (2)9(x+2)2=16,

    x+2)2=

    x+2=

    x=-x=

    【点睛】

    本题考查了立方根和平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.

    5、(1);(2)

    【分析】

    (1)先计算乘方运算,求解算术平方根,化简绝对值,再合并即可;

    (2)提取公因式即可.

    【详解】

    解:(1)解:原式

    (2)解:原式

    【点睛】

    本题考查的是立方根的含义,绝对值的化简,实数的运算,提公因式法分解因式,掌握“实数的运算及提公因式分解因式”是解本题的关键.

    6、(1)1;(2)

    【分析】

    (1)计算乘方,零指数幂,算术平方根,负指数幂,再计算加减法即可;

    (2)先立方根,零指数幂,绝对值化简,去括号合并即可.

    【详解】

    解:(1)

    =

    =1;

    (2)

    =

    =

    【点睛】

    本题考查实数混合计算,零指数幂,负指数幂,算术平方根,立方根,绝对值,掌握以上知识是解题关键.

    7、(1) ;(2)x=−

    【分析】

    (1)方程变形后,利用平方根定义开方即可求出解;

    (2)把x−1可做一个整体求出其立方根,进而求出x的值.

    【详解】

    解:(1)

    (2)8(x−1)3=−27,

    x−1)3=−

    x−1=−

    x=−

    【点睛】

    本题考查了平方根、立方根.熟练掌握平方根、立方根的定义和性质是解题的关键.

    8、

    【分析】

    根据正数的平方根有2个,且互为相反数,以及求出的值即可.

    【详解】

    解:因为是正数的两个平方根,可得:

    代入,解得:

    所以

    所以

    【点睛】

    此题考查了平方根,明确一个正数的两个平方根互为相反数,和为0是解题的关键.

    9、

    【分析】

    先计算算术平方根、立方根、乘方、化简绝对值,再计算实数的加减法即可得.

    【详解】

    解:原式

    【点睛】

    本题考查了算术平方根、立方根、实数的加减等知识点,熟练掌握各运算法则是解题关键.

    10、

    (1)-5

    (2)

    (3)k=1,4,7.

    【分析】

    (1)根据规定代入数据求解即可;

    (2)根据规定代入整式,利用方程的思想求解即可;

    (3)根据规定代入整式,利用方程的思想,用含的式子表示x,利用是小于10的正整数,x是整数,就可求出的值.

    (1)

    解:

    (2)

    解:

    即:

    (3)

    解:

    即:

    因为是小于10的正整数且x是整数,

    所以k=1时,x=3;k=4时,x=4;k=7时,x=5.

    所以k=1,4,7.

    【点睛】

    本题考查新定义问题.新定义问题是一道创设情境、引入新的数学概念的探索性问题,发现问题间的区别与联系,创造性地解决问题,主要考察数形结合、类比与归纳的数学思想方法.

     

    相关试卷

    沪教版 (五四制)七年级下册第十二章 实数综合与测试课后练习题:

    这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试课后练习题,共21页。试卷主要包含了下列说法中错误的是,化简计算﹣的结果是,实数在哪两个连续整数之间,3的算术平方根是,下列等式正确的是等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课时训练:

    这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课时训练,共24页。试卷主要包含了下列各式正确的是.,下列实数比较大小正确的是,3的算术平方根为,对于两个有理数,100的算术平方根是等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十二章 实数综合与测试同步练习题:

    这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试同步练习题,共21页。试卷主要包含了16的平方根是,下列说法正确的是,可以表示,下列说法等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map