沪教版 (五四制)七年级下册第十二章 实数综合与测试课后练习题
展开
这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试课后练习题,共21页。试卷主要包含了下列说法中错误的是,化简计算﹣的结果是,实数在哪两个连续整数之间,3的算术平方根是,下列等式正确的是等内容,欢迎下载使用。
沪教版(上海)七年级数学第二学期第十二章实数定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列整数中,与-1最接近的是( )A.2 B.3 C.4 D.52、在实数|﹣3.14|,﹣3,﹣,﹣π中,最小的数是( )A.﹣ B.﹣3 C.|﹣3.14| D.﹣π3、在﹣3,0,2,这组数中,最小的数是( )A. B.﹣3 C.0 D.24、下列说法中错误的是( )A.9的算术平方根是3 B.的平方根是C.27的立方根为 D.平方根等于±1的数是15、化简计算﹣的结果是( )A.12 B.4 C.﹣4 D.﹣126、实数在哪两个连续整数之间( )A.3与4 B.4与5 C.5与6 D.12与137、如图,数轴上的点A,B,O,C,D分别表示数,,0,1,2,则表示数的点P应落在( ).A.线段AB上 B.线段BO上 C.线段OC上 D.线段CD上8、3的算术平方根是( )A.±3 B. C.-3 D.39、下列等式正确的是( )A. B. C. D.10、在实数,,,,,,,0.1010010001…(相邻两个1中间依次多1个0)中,无理数有( ).A.2个 B.3个 C.4个 D.5个第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、下列各数:-1、、、,0.1010010001…(相邻两个1之间0的个数增加1),其中无理数的个数是______.2、比较大小: _____ (填“<”或“>”符号)3、下列各数中:12,,,,0.1010010001…(每两个1之间的0依次加1),其中,无理数有_____个.4、按一定规律排列的一列数:3,32,3﹣1,33,3-4,37,3﹣11,318,…,若a,b,c表示这列数中的连续三个数,猜想a,b,c满足的关系式是______.5、计算: = ______.三、解答题(10小题,每小题5分,共计50分)1、计算:(1) (2)2、众所周知,所有实数都可以用数轴上的点来表示.其中,我们将数轴上表示正整数的点称为“正点”.取任意一个“正点”P,该数轴上到点P距离为1的点所对应的数分别记为a,b(a<b).定义:若数m=b3﹣a3,则称数m为“复合数”.例如:若“正点”P所表示的数为3,则a=2,b=4,那么m=43﹣23=56,所以56是“复合数”.(提示:b3﹣a3=(b﹣a)(b2+ab+a2).)(1)请直接判断12是不是“复合数”,并且证明所有的“复合数”与2的差一定能被6整除;(2)已知两个“复合数”的差是42,求这两个“复合数”.3、如图是一个无理数筛选器的工作流程图.(1)当x为16时,y值为______;(2)是否存在输入有意义的x值后,却始终输不出y值?如果存在,写出所有满足要求的x值;如果不存在,请说明理由;(3)如果输入x值后,筛选器的屏幕显示“该操作无法运行”,请你分析输入的x值可能是什么情况?(4)当输出的y值是时,判断输入的x值是否唯一?如果不唯一,请写出其中的三个.4、计算:(1)18+(﹣17)+7+(﹣8);(2)×(﹣12);(3)﹣22+|﹣1|+.5、计算:.6、解方程,求x的值.(1) (2)7、将下列各数填入相应的横线上:整数:{ …}有理数: { …}无理数: { …}负实数: { …}.8、小明打算用一块面积为900cm2的正方形木板,沿着边的方向裁出一个长方形面积为588cm2的桌面,并且长宽之比为4∶3,你认为能做到吗?如果能,计算出桌面的长和宽;如果不能,请说明理由.9、如图,将一个边长为a+b的正方形图形分割成四部分(两个正方形和两个长方形),请认真观察图形,解答下列问题:(1)根据图中条件,请用两种方法表示该图形的总面积(用含a、b的代数式表示出来);(2)如果图中的a,b(a>b)满足a2+b2=57,ab=12,求a+b的值.10、求下列各式中的x:(1);(2). -参考答案-一、单选题1、A【分析】先由无理数估算,得到,且接近3,即可得到答案.【详解】解:由题意,∵,且接近3,∴最接近的是整数2;故选:A.【点睛】本题考查了无理数的估算,解题的关键是掌握无理数的概念,正确的得到接近3.2、D【分析】把数字从大到小排序,然后再找最小数.【详解】解:|﹣3.14|=3.14.|﹣3|=3,|-|=,|﹣π|=π.∴﹣π<﹣3<﹣<|﹣3.14|,故选:D.【点睛】本题考查实数大小比较,掌握比较方法是本题关键.3、B【分析】先确定3与的大小,再确定四个数的大小顺序,由此得到答案.【详解】解:∵9>7,∴3>,∴-3<,∴-3<<0<2,故选:B.【点睛】此题考查了实数的估值,实数的大小比较,正确掌握实数的估值计算是解题的关键.4、C【分析】根据平方根,算术平方根,立方根的性质,即可求解.【详解】解:A、9的算术平方根是3,故本选项正确,不符合题意;B、因为 ,4的平方根是 ,故本选项正确,不符合题意;C、27的立方根为3,故本选项错误,符合题意;D、平方根等于±1的数是1,故本选项正确,不符合题意;故选:C【点睛】本题主要考查了平方根,算术平方根,立方根的性质,熟练掌握平方根,算术平方根,立方根的性质是解题的关键.5、B【分析】根据算术平方根和立方根的计算法则进行求解即可.【详解】解:,故选B.【点睛】本题主要考查了求算术平方根和立方根,解题的关键在于能够熟练掌握立方根和算术平方根的求解方法.6、B【分析】估算即可得到结果.【详解】解:,,故选:B.【点睛】本题考查了估算无理数的大小,解题的关键是熟练掌握估算无理数的大小的法则.7、B【分析】根据,得到,根据数轴与实数的关系解答.【详解】解:∵,∴,∴,∴,∴表示的点在线段BO上,故选:B.【点睛】本题考查了无理数的估算,实数与数轴,正确估算无理数的大小是解本题的关键.8、B【分析】根据算术平方根的定义求解即可,平方根:如果一个数的平方等于,那么这个数就叫的平方根,其中属于非负数的平方根称之为算术平方根.【详解】解:3的算术平方根是故选B【点睛】本题考查了算术平方根的定义,掌握定义是解题的关键.9、C【分析】根据算术平方根的定义和性质,立方根的定义逐项分析判断即可【详解】A. ,故该选项不正确,不符合题意;B. 无意义,故该选项不正确,不符合题意; C. ,故该选项正确,符合题意;D. ,故该选项不正确,不符合题意;故选C【点睛】本题考查了平方根和立方根的概念和求法,理解、记忆平方根和立方根的概念是解题关键.平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数) 其中属于非负数的平方根称之为算术平方根;立方根:如果x3=a,则x叫做a的立方根,记作“”(a称为被开方数).10、D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:是有理数,是无限循环小数,是有理数,是分数,是有理数,,,,,0.1010010001…(相邻两个1中间依次多1个0)是无理数,共个,故选:D.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.二、填空题1、3【分析】无理数就是无限不循环小数;有理数是整数与分数的统称,即有限小数和无限循环小数是有理数,由此即可判定.【详解】在-1、、、,0.1010010001…(相邻两个1之间0的个数增加1)中,无理数有,,0.1010010001…(相邻两个1之间0的个数增加1)共3个.故答案为:3.【点睛】本题考查了实数的分类,理解有理数与无理数的概念是解题的关键.2、>【分析】根据实数比较大小的方法判断即可.【详解】∵正数大于一切负数,∴ ,故答案为:>.【点睛】此题主要考查实数的大小比较,熟练掌握实数比较大小的方法是解题的关键.3、2【分析】根据无理数的定义(无理数是指无限不循环小数)判断即可.【详解】解:无理数有,0.1010010001…(每两个1之间的0依次加1),共有2个,故答案为:2.【点睛】本题考查了无理数,无理数是无限不循环小数,熟练掌握无理数的概念是本题的关键点.4、bc=a【分析】首先判断出这列数中,3的指数各项依次为 1,2,﹣1,3,﹣4,7,﹣11,18…,从第三个数起,前两数相除等于第三个数,可得这列数中的连续三个数,满足a÷b=c,据此解答即可.【详解】∵3,32,3﹣1,33,3﹣4,37,3﹣11,318,…,,,,,,,…,∴a,b,c满足的关系式是a÷b=c,即bc=a.故答案为:bc=a.【点睛】此题考查了实数的规律问题,同底数幂的除法运算,负整数指数幂等知识,解题的关键是正确分析出题目中指数之间的规律.5、##【分析】根据求一个数的立方根,化简绝对值,求一个数的算术平方根,进行实数的混合运算【详解】解:故答案为:【点睛】本题考查了一个数的立方根,化简绝对值,求一个数的算术平方根,掌握以上知识是解题的关键.三、解答题1、(1)5;(2)【分析】(1)分别求解算术平方根与立方根,再进行加减运算即可;(2)按照多项式除以单项式的法则:把多项式的每一项分别除以单项式,再把所得的商相加,从而可得答案.【详解】解:(1)(2)【点睛】本题考查的是求解一个数的算术平方根与立方根,多项式除以单项式,掌握基础运算是解本题的关键.2、(1)12不是复合数;证明见解析;(2)98和56.【分析】(1)直接利用定义进行判断12不是复合数,利用定义对复合数进行变形即可证明;(2)借助(1)的证明,所有的复合数都可以写成6x2+2,设出两个复合数进行转化.【详解】(1)12不是复合数,∵找不到两个整数a,b,使a3﹣b3=12,故12不是复合数,设“正点”P所表示的数为x(x为正整数),则a=x﹣1,b=x+1,∴(x+1)3﹣(x﹣1)3 =(x+1﹣x+1)(x2+2x+1+x2﹣1+x2﹣2x+1)=2(3x2+1)=6x2+2,∴6x2+2﹣2=6x2一定能被6整除;(2)设两个复合数为6m2+2和6n2+2(m,n都是正整数),∵两个“复合数”的差是42,∴(6m2+2)﹣(6n2+2)=42,∴m2﹣n2=7,∵m,n都是正整数,∴,∴,∴6m2+2=98,6n2+2=56,这两个“复合数”为98和56.【点睛】本题考查关于实数的新定义题型,理解新定义是解题的关键.3、(1)(2)0,1(3)x<0(4)x=3或x=9或x=81.【分析】(1)根据运算规则即可求解;(2)根据0的算术平方根是0,即可判断;(3)根据二次根式有意义的条件,被开方数是非负数即可求解;(4)根据运算法则,进行逆运算即可求得无数个满足条件的数.(1)解:当x=16时,,则y=;故答案是:.(2)解:当x=0,1时,始终输不出y值.因为0,1的算术平方根是0,1,一定是有理数;(3)解:当x<0时,导致开平方运算无法进行;(4)解: x的值不唯一.x=3或x=9或x=81.【点睛】本题考查了算术平方根及无理数,正确理解给出的运算方法是关键.4、(1)0;(2)1;(3)【分析】(1)根据有理数的加法计算法则求解即可;(2)根据有理数的乘法分配律求解即可;(3)根据有理数的乘方,绝对值和算术平方根的计算法则求解即可.【详解】解:(1) ;(2);(3).【点睛】本题主要考查了有理数乘法的分配律,有理数的加减,有理数的乘方,化简绝对值,算术平方根,熟知相关计算法则是解题的关键.5、1【分析】分别根据数的开方法则、0指数幂及负整数指数幂的计算法则计算出各数,再进行加减运算即可.【详解】解:【点睛】本题考查的是实数的运算,熟知数的开方法则、0指数幂及负整数指数幂的计算法则是解答此题的关键.6、(1)或 ;(2)x=−【分析】(1)方程变形后,利用平方根定义开方即可求出解;(2)把x−1可做一个整体求出其立方根,进而求出x的值.【详解】解:(1), ,或 ;(2)8(x−1)3=−27,(x−1)3=−,x−1=−,x=−.【点睛】本题考查了平方根、立方根.熟练掌握平方根、立方根的定义和性质是解题的关键.7、;;,-3.030030003…,π;-3.030030003…,;【分析】有理数与无理数统称实数,整数与分数统称有理数,按照无理数、有理数的定义及实数的分类标准进行分类即可.【详解】整数:{ }有理数:{ }无理数:{,-3.030 030 003…,π…};负实数:{-3.030 030 003…, …};【点睛】本题考查的是实数的概念与分类,掌握“实数的分类与概念”是解本题的关键.8、能,桌面长宽分别为28cm和21cm【分析】本题可设它的长为4x,则它的宽为3x,根据面积公式列出方程解答即可求出x的值,再代入长宽的表达式,看是否符合条件即可.【详解】能做到,理由如下:设桌面的长和宽分别为4x(cm)和3x(cm),根据题意得,4x×3x=588.12x2=588.(cm)3x=3×7=21(cm).∵面积为900cm2的正方形木板的边长为30cm,28cm<30cm,∴能够裁出一个长方形面积为588cm2并且长宽之比为4∶3的桌面,答:桌面长宽分别为28cm和21cm.【点睛】本题考察了算术平方根及列方程解应用题的知识点,读懂题意,找出等量关系列出方程是本题的关键点.9、(1)或;(2)9【分析】(1)由大正方形的边长为可得面积,由大正方形由两个小正方形与两个长方形组成,可利用面积和表示大正方形的面积,从而可得答案;(2)由(1)可得:再把a2+b2=57,ab=12,利用平方根的含义解方程即可.【详解】解:(1) 大正方形的边长为 大正方形由两个小正方形与两个长方形组成, (2)由(1)得: a2+b2=57,ab=12, 则 【点睛】本题考查的是完全平方公式的几何背景,利用平方根的含义解方程,掌握“完全平方公式在几何图形中的应用”是解本题的关键.10、(1)或(2)【分析】(1)根据平方根定义开方,求出两个方程的解即可;(2)先移项,再根据立方根定义得出一个一元一次方程,求出方程的解即可.(1)开平方得, ∴ 解得,或(2)移项得,方程两边同除以8,得,开立方,得,【点睛】本题考查了平方根和立方根的应用,主要考查学生的理解能力和计算能力.
相关试卷
这是一份初中数学第十二章 实数综合与测试练习题,共18页。试卷主要包含了在下列各数,下列各组数中相等的是,下列各数中,比小的数是,下列各数中,最小的数是,在以下实数等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后作业题,共21页。试卷主要包含了下列四个数中,最小的数是,的值等于,已知a=,b=-|-|,c=,实数在哪两个连续整数之间,下列说法等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课时训练,共24页。试卷主要包含了下列各式正确的是.,下列实数比较大小正确的是,3的算术平方根为,对于两个有理数,100的算术平方根是等内容,欢迎下载使用。