终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    精品试题沪教版(上海)七年级数学第二学期第十二章实数课时练习试题(含答案解析)

    立即下载
    加入资料篮
    精品试题沪教版(上海)七年级数学第二学期第十二章实数课时练习试题(含答案解析)第1页
    精品试题沪教版(上海)七年级数学第二学期第十二章实数课时练习试题(含答案解析)第2页
    精品试题沪教版(上海)七年级数学第二学期第十二章实数课时练习试题(含答案解析)第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后复习题

    展开

    这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后复习题,共22页。试卷主要包含了下列等式正确的是.,下列四个数中,最小的数是,16的平方根是,在下列四个实数中,最大的数是等内容,欢迎下载使用。
    沪教版(上海)七年级数学第二学期第十二章实数课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如果一个正数a的两个不同平方根是2x-2和6-3x,则这个正数a的值为(    A.4 B.6 C.12 D.362、关于的叙述,错误的是(  )A.是无理数B.面积为8的正方形边长是C.的立方根是2D.在数轴上可以找到表示的点3、下列说法正确的是(  A.0.01是0.1的平方根 B.小于0.5C.的小数部分是D.任意找一个数,利用计算器对它开立方,再对得到的立方根进行开立方……如此进行下去,得到的数会越来越趋近14、下列等式正确的是(    ).A. B. C. D.5、下列四个数中,最小的数是(    A.﹣3 B.﹣ C.0 D.﹣π6、若一个数的算术平方根与它的立方根的值相同,则这个数是(   )A.1 B.0和1 C.0 D.非负数7、16的平方根是(  )A.±8 B.8 C.4 D.±48、在下列四个实数中,最大的数是(  )A.0 B.﹣2 C.2 D.9、在实数|﹣3.14|,﹣3,﹣,﹣π中,最小的数是(  )A.﹣ B.﹣3 C.|﹣3.14| D.﹣π10、下列各数中,3.1415,,0.321,π,2.32232223…(相邻两个3之间的2的个数逐次增加1),无理数有(    A.0个 B.1个 C.2个 D.3个第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、比较大小:______3(填“>”、“<”或“=”).2、计算____________;3、若实数ab互为相反数,cd互为倒数,e的整数部分,f的小数部分,则代数式的值是 ___.4、若,则_________.5、已知xy满足关系式=0,则xy的算术平方根为______.三、解答题(10小题,每小题5分,共计50分)1、已知xy满足,求xy的值.2、阅读材料,回答问题.下框中是小马同学的作业,老师看了后,找来小马.问道:“小马同学,你标在数轴上的两个点对应题中两个无理数,是吗?”小马点点头.老师又说:“你这两个无理数对应的点找得非常准确,遗憾的是没有完成全部解答.”请把实数|﹣|,﹣π,﹣4,,2表示在数轴上,并比较它们的大小(用<号连接).解:请你帮小马同学将上面的作业做完.3、计算下列各题:(1)(2)(3)4、已知正数a的两个不同平方根分别是2x﹣2和6﹣3xa﹣4b的算术平方根是4.(1)求这个正数a以及b的值;(2)求b2+3a﹣8的立方根.5、(1)计算(2)计算(3)解方程(4)解方程组6、若互为相反数,且x≠0,y≠0,求的值.7、计算:(1)(2)8、计算:9、解方程:(1)4(x﹣1)2=36;(2)8x3=27.10、如图:在数轴上A点表示数aB点表示数bC点表示数c,且ab满足|a+3|+(b﹣9)2=0,c=1.(1)a     b     (2)点P为数轴上一动点,其对应的数为x,则当x     时,代数式|xa|﹣|xb|取得最大值,最大值为      (3)点P从点A处以1个单位/秒的速度向左运动;同时点Q从点B处以2个单位/秒的速度也向左运动,在点Q到达点C后,以原来的速度向相反的方向运动,设运动的时间为tt≤8)秒,求第几秒时,点PQ之间的距离是点BQ之问距离的2倍? -参考答案-一、单选题1、D【分析】根据正数平方根有两个,它们是互为相反数,可列方程2x-2+6-3x=0,解方程即可.【详解】解:∵一个正数a的两个不同平方根是2x-2和6-3x∴2x-2+6-3x=0,解得:x=4,∴2x-2=2×4-2=8-2=6,∴正数a=62=36.故选择D.【点睛】本题考查平方根性质,一元一次方程,掌握正数有两个平方根,它们是互为相反数,零的平方根是零,负数没有平方根是解题关键.2、C【分析】根据实数的分类,平方根和立方根的性质,实数与数轴的关系逐项判断即可求解.【详解】解:A是无理数,该说法正确,故本选项不符合题意;B、∵,所以面积为8的正方形边长是,该说法正确,故本选项不符合题意;C、8的立方根是2,该说法错误,故本选项符合题意;D、因为数轴上的点与实数是一一对应的,所以在数轴上可以找到表示的点,该说法正确,故本选项不符合题意;故选:C【点睛】本题主要考查了实数的分类,平方根和立方根的性质,实数与数轴的关系,熟练掌握实数的分类,平方根和立方根的性质,实数与数轴的关系是解题的关键.3、C【分析】根据平方根的定义,以及无理数的估算等知识点进行逐项分析判断即可.【详解】解:A、0.1是0.01的平方根,原说法错误,不符合题意;B、由,得,原说法错误,不符合题意;C、由,得,即的整数部分为4,则小数部分为,原说法正确,符合题意;D、例如0和-1按此方法无限计算,结果仍为0和-1,并不是趋近于1,原说法错误,不符合题意;故选:C.【点睛】本题考查平方根的定义,无理数的估算等,掌握实数的相关基本定义是解题关键.4、由不等式的性质可知:5-2<−2<6-2,即3<−2<故选:C.【点睛】本题主要考查的是估算无理数的大小,明确被开方数越大对应的算术平方根也越大是解题的关键.4.C【分析】分别利用平方根和算术平方根以及立方根得出各选项是否正确即可.【详解】解:A,故此选项错误;B,故此选项错误;C、由B得此选项正确;D,故此选项错误.故选:C【点睛】此题主要考查了立方根、平方根、算术平方根等知识,正确把握各定义是解题关键.5、D【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断出各数中最小的是哪个即可.【详解】解:∵∴最小的数是故选D.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.6、B【分析】根据立方根和算术平方根的性质可知,立方根等于它本身的实数0、1或-1,算术平方根等于它本身的实数是0或1,由此即可解决问题.【详解】解:∵立方根等于它本身的实数0、1或−1,算术平方根等于它本身的数是0和1,∴一个数的算术平方根与它的立方根的值相同的是0和1,故选B.【点睛】主要考查了立方根,算术平方根的性质.牢牢掌握立方根和算术平方根等于它本身的实数是解答本题的关键点.7、D【分析】根据平方根可直接进行求解.【详解】解:∵(±4)2=16,∴16的平方根是±4.故选:D.【点睛】本题主要考查平方根,熟练掌握求一个数的平方根是解题的关键.8、C【分析】先根据正数大于0,0大于负数,排除,然后再用平方法比较2与即可.【详解】解:正数负数,排除最大的数是2,故选:【点睛】本题考查了实数的大小比较,算术平方根,熟练掌握用平方法来比较大小是解题的关键.9、D【分析】把数字从大到小排序,然后再找最小数.【详解】解:|﹣3.14|=3.14.|﹣3|=3,|-|=,|﹣π|=π.∴﹣π<﹣3<﹣<|﹣3.14|,故选:D【点睛】本题考查实数大小比较,掌握比较方法是本题关键.10、D【分析】理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】3.1415,0.321是有限小数,属于有理数;是分数,属于有理数;无理数有,π,2.32232223…(相邻两个3之间的2的个数逐次增加1),共3个.故选:D.【点睛】此题考查了无理数.解题的关键是掌握实数的分类.二、填空题1、<【分析】,再利用不等式的基本性质可得,从而可得答案.【详解】解:∵故答案为:<.【点睛】本题考查的是实数的大小比较,掌握实数的大小比较的方法是解题的关键.2、-3【分析】根据立方根、算术平方根可直接进行求解.【详解】解:原式=故答案为-3.【点睛】本题主要考查立方根、算术平方根,熟练掌握求一个数的立方根及算术平方根是解题的关键.3、4-【分析】根据互为相反数、互为倒数、无理数的整数部分、小数部分的意义求解即可.【详解】解:∵实数ab互为相反数,a+b=0,cd互为倒数,cd=1,∵3<<4,的整数部分为3,e=3,∵2<<3,的小数部分为-2,即f=-2,=0+1-3+-2=故答案为:4-【点睛】本题考查相反数、倒数、无理数的估算,掌握相反数、倒数的意义,以及无理数的整数部分、小数部分的表示方法是解决问题的关键.4、【分析】根据算术平方根的非负性及平方的非负性求出xy的值,代入计算即可.【详解】解:∵,且x-2=0,y+3=0,x=2,y=-3,故答案为:-6.【点睛】此题考查了有理数的乘法计算,正确掌握算术平方根的非负性及平方的非负性求出xy的值是解题的关键.5、4【分析】直接利用算术平方根以及偶次方的性质得出xy的值,进而得出答案.【详解】解:∵x+4=0,y-2=0,解得:x=-4,y=2,xy=(-4)2=16,16的算术平方根是:4.故答案为:4.【点睛】本题主要考查了算术平方根以及偶次方的性质,正确得出xy的值是解题关键.三、解答题1、x=5;y=2【分析】根据非负数的性质可得关于xy的方程组,求解可得其值;【详解】解:由题意可得联立得解方程组得:xy的值分别为5、2.【点睛】此题考查的是非负数的性质,解二元一次方程组,掌握绝对值及算术平方根的非负性是解决此题的关键.2、图见解析,﹣4<﹣π<|﹣|<2<【分析】根据确定原点,根据数轴上的点左边小于右边的排序依次表示即可.【详解】把实数||,,2表示在数轴上如图所示,<||<2<【点睛】本题考查用数轴比较点的大小,根据题意先确定原点是解题的关键.3、(1)-3(2)-6x(3)4y-3xz【分析】(1)先化简零指数幂,负整数指数幂,有理数的乘方,绝对值,然后再计算;(2)先利用积的乘方运算法则计算乘方,然后利用整式乘除法运算法则从左往右依次计算.(3)根据多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.(1)解:原式(2)解:原式(3)解:【点睛】本题考查整式的混合运算,负整数指数幂,零指数幂,掌握积的乘方(abn=anbn运算法则,整式的除法,理解a0=1(a≠0),a≠0),牢记法则是解题关键.4、(1);(2)b2+3a﹣8的立方根是5【分析】(1)根据题意可得,2x﹣2+6﹣3x=0,即可求出a=36,再根据a﹣4b的算术平方根是4,求出b的值即可;(2)将(1)中所求ab的值代入代数式b2+3a﹣8求值,再根据立方根定义计算即可求解.【详解】解:(1)∵正数a的两个不同平方根分别是2x﹣2和6﹣3x∴2x﹣2+6﹣3x=0,x=4,∴2x﹣2=6,a=36,a﹣4b的算术平方根是4,a﹣4b=16,∴36-4b=16b=5;(2)当a=36,b=5时,b2+3a﹣8=25+36×3﹣8=125,b2+3a﹣8的立方根是5.【点睛】本题考查平方根的性质,算术平方根定义,立方根定义,掌握平方根的性质,算术平方根定义,立方根定义是解题关键.5、(1);(2);(3);(4)【分析】(1)先计算算术平方根与立方根,再计算加减法即可得;(2)先化简绝对值,再计算实数的加减法即可得;(3)利用平方根解方程即可得;(4)利用加减消元法解二元一次方程组即可得.【详解】解:(1)原式(2)原式(3)(4)由②①得:解得代入①得:解得故方程组的解为【点睛】本题考查了算术平方根与立方根、实数的加减、解二元一次方程组等知识点,熟练掌握各运算法则和方程组的解法是解题关键.6、【分析】根据互为相反数的和为零,可得方程,再根据等式的性质变形.【详解】由题意可得:,即【点睛】本题考查了相反数的概念以及立方根,利用互为相反数的和为零得出方程是解题关键.7、(1)1;(2)【分析】(1)先计算负指数幂,零指数幂,绝对值,再计算加法即可;(2)先调整符号,利用平分差公式计算,再利用完全平方公式展开计算去括号即可.【详解】解:(1)==1;(2)====【点睛】本题考查实数混合计算,负指数幂,零指数幂,整式乘法公式混合计算,掌握实数混合计算,负指数幂,零指数幂,整式乘法公式混合计算是解题关键.8、2﹣π【分析】根据题意利用算术平方根性质和去绝对值以及乘方运算先化简各式,然后再进行计算.【详解】解:=3﹣(π﹣)+(﹣1)﹣=3﹣π+﹣1﹣=2﹣π.【点睛】本题考查含乘方和算术平方根的实数运算,熟练掌握利用算术平方根性质和去绝对值以及乘方运算法则进行化简是解题的关键.9、(1)x=4或﹣2;(2)x【分析】(1)先变形为(x﹣1)2=9,然后求9的平方根即可;(2)先变形为x3,再利用立方根的定义得到答案.【详解】解:(1)方程两边除以4得,(x﹣1)2=9,x﹣1=±3,x=4或﹣2;(2)方程两边除以8得,x3所以x【点睛】本题考查了平方根、立方根的运算,熟练掌握运算法则是解本题的关键.10、(1)﹣3,9;(2)≥9,12;(3)秒或秒.【分析】(1)由|a+3|+(b﹣9)2=0,根据非负数的性质得|a+3|=0,(b﹣9)2=0,即可求出a=﹣3、b=9;(2)由(1)得a=﹣3、b=9,则代数式|xa|﹣|xb|即代数式|x+3|﹣|x﹣9|,按x<﹣3、﹣3≤x<9及x≥9分类讨论,分别求出相应的代数式的值或范围,再确定代数式的最大值;(3)先由点C表示的数是1,点B表示的数是9,计算出BC两点之间的距离,确定t的取值范围,再按t的不同取值范围分别求出相应的t的值即可.【详解】解:(1)∵|a+3|≥0,(b﹣9)2≥0,且|a+3|+(b﹣9)2=0,∴|a+3|=0,(b﹣9)2=0,a=﹣3,b=9,故答案为:﹣3,9.(2)∵a=﹣3,b=9,∴代数式|xa|﹣|xb|即代数式|x+3|﹣|x﹣9|,x<﹣3时,|x+3|﹣|x﹣9|=﹣(x+3)﹣(9﹣x)=﹣12;当﹣3≤x<9时,|x+3|﹣|x﹣9|=x+3﹣(9﹣x)=2x﹣6,∵﹣12≤2x﹣6<12,∴﹣12≤|x+3|﹣|x﹣9|<12;x≥9时,|x+3|﹣|x﹣9|=x+3﹣(x﹣9)=12,综上所述,|x+3|﹣|x﹣9|的最大值为12,故答案为:≥9,12.(3)∵点C表示的数是1,点B表示的数是9,BC两点之间的距离是9﹣1=8,当点Q与点C重合时,则2t=8,解得t=4,当0<t≤4时,如图1,点P表示的数是﹣3﹣t,点Q表示的数是9﹣2t根据题意得9﹣2t﹣(﹣3﹣t)=2×2t解得t当4<t≤8时,如图2,点P表示的数仍是﹣3﹣t∵1+(2t﹣8)=2t﹣7,∴点Q表示的数是2t﹣7,根据题意得2t﹣7﹣(﹣3﹣t)=2(16﹣2t),解得t综上所述,第秒或第秒,点PQ之间的距离是点BQ之间距离的2倍.【点睛】本题考查数轴、数轴上两点间的距离,一元一次方程的应用、绝对值的几何意义等知识,是重要考点,难度一般,掌握相关知识是解题关键. 

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试同步测试题:

    这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试同步测试题,共21页。试卷主要包含了若,则的值为,以下正方形的边长是无理数的是,下列各数中,比小的数是,下列各式中,化简结果正确的是,对于两个有理数,3的算术平方根为等内容,欢迎下载使用。

    2021学年第十二章 实数综合与测试测试题:

    这是一份2021学年第十二章 实数综合与测试测试题,共19页。试卷主要包含了在下列四个实数中,最大的数是,下列各数是无理数的是,下列判断,若,则整数a的值不可能为等内容,欢迎下载使用。

    沪教版 (五四制)第十二章 实数综合与测试综合训练题:

    这是一份沪教版 (五四制)第十二章 实数综合与测试综合训练题,共20页。试卷主要包含了有一个数值转换器,原理如下,实数﹣2的倒数是,a为有理数,定义运算符号▽,的算术平方根是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map