初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后作业题
展开这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后作业题,共18页。试卷主要包含了下列说法,有一个数值转换器,原理如下,若与互为相反数,则a,0.64的平方根是,若 ,则等内容,欢迎下载使用。
沪教版(上海)七年级数学第二学期第十二章实数达标测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、规定一种新运算:,如.则的值是( ).
A. B. C.6 D.8
2、若,则整数a的值不可能为( )
A.2 B.3 C.4 D.5
3、在3.14,,,,,,,中,无理数有( )
A.1个 B.2个 C.3个 D.4个
4、下列说法:①-27的立方根是3;②36的算数平方根是;③的立方根是;④的平方根是.其中正确说法的个数是( )
A.1 B.2 C.3 D.4
5、有一个数值转换器,原理如下:当输入的x为64时,输出的y是( )
A. B.2 C. D.
6、若与互为相反数,则a、b的值为( )
A. B. C. D.
7、0.64的平方根是( )
A.0.8 B.±0.8 C.0.08 D.±0.08
8、若 ,则 ( )
A. B. C. D.
9、如图,数轴上的点A,B,O,C,D分别表示数,,0,1,2,则表示数的点P应落在( ).
A.线段AB上 B.线段BO上 C.线段OC上 D.线段CD上
10、下列各数,,,,其中无理数的个数有( )
A.4个 B.3个 C.2个 D.1个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、0.064的立方根是______.
2、按一定规律排列的一列数:3,32,3﹣1,33,3-4,37,3﹣11,318,…,若a,b,c表示这列数中的连续三个数,猜想a,b,c满足的关系式是______.
3、比较大小:______3(填“>”、“<”或“=”).
4、用“*”定义一种新运算:对于任意有理数a和b,规定a*b=ab2+2a,则3*(-2)=_____________.
5、10-3的立方根是_______.
三、解答题(10小题,每小题5分,共计50分)
1、已知x,y满足,求x、y的值.
2、解方程:
(1)4(x﹣1)2=36;
(2)8x3=27.
3、已知x-2的平方根是±2,x+2y+7的立方根是3,求3x+y的算术平方根.
4、计算:
(1);
(2)﹣16÷(﹣2)2.
5、(1)计算:;
(2)求下列各式中的x:
①;
②(x+3)3=﹣27.
6、求下列各式中的x:
(1);
(2).
7、计算:
8、计算
(1);
(2)
9、计算:+++.
10、做一个底面积为24cm2,长、宽、高的比为4:2:1的长方体,求这个长方体的长、宽、高分别是多少cm?
-参考答案-
一、单选题
1、C
【分析】
根据新定义计算法则把转化为常规下运算得出,然后按有理数运算法则计算即可.
【详解】
解:∵,
∴.
故选择C.
【点睛】
本题考查新定义运算,掌握新定义运算的要点,含乘方的有理数混合运算是解题关键.
2、D
【分析】
首先确定和的范围,然后求出整式a可能的值,判断求解即可.
【详解】
解:∵,即,,即,
又∵,
∴整数a可能的值为:2,3,4,
∴整数a的值不可能为5,
故选:D.
【点睛】
此题考查了无理数的估算,解题的关键是熟练掌握无理数的估算方法.
3、C
【分析】
分别根据无理数、有理数的定义即可判定选择项.
【详解】
解:3.14是有理数,是无理数,是无理数,是有理数,是有理数,是无理数,是有理数,是有理数;
∴无理数有三个,
故选C.
【点睛】
此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.
4、A
【分析】
分别进行立方根运算、算术平方根运算、平方根运算逐个判断即可.
【详解】
解:①-27的立方根是-3,错误;
②36的算数平方根是6,错误;
③的立方根是,正确;
④的平方根是,错误,
∴正确的说法有1个,
故选:A.
【点睛】
本题考查立方根、算术平方根、平方根,熟练掌握算术平方根和平方根的区别是解答的关键.
5、C
【分析】
直接利用立方根以及算术平方根、无理数分析得出答案.
【详解】
解:由题意可得:64的立方根为4,4的算术平方根是2,2的算术平方根是,
即.
故选:C.
【点睛】
本题主要考查了立方根以及算术平方根、无理数的定义,解题的关键是正确掌求一个数的算术平方根.
6、D
【分析】
首先根据绝对值的性质和二次根式的性质得到,然后解方程组求解即可.
【详解】
解:∵与互为相反数,
∴+=0,
∴,
得:,
得:,解得:,
将代入①得:,解得:.
故选:D.
【点睛】
此题考查了绝对值的性质,二次根式的性质,相反数的性质以及解二元一次方程组等知识,解题的关键是根据题意得出关于a、b的方程组并求解.
7、B
【分析】
根据如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根,由此求解即可.
【详解】
解:∵(±0.8)2=0.64 ,
∴0.64的平方根是±0.8,
故选:B.
【点睛】
本题主要考查了平方根的概念,解题的关键在于掌握平方根的正负两种情况.
8、B
【分析】
先利用的值,求出,再利用负整数指数幂的运算法则,得到的值.
【详解】
解:,
或(舍去),
,
故选:B.
【点睛】
本题主要是考查了开二次根式以及负整数指数幂的运算法则,熟练掌握负整数指数幂的运算法则:,是解决本题的关键.
9、B
【分析】
根据,得到,根据数轴与实数的关系解答.
【详解】
解:∵,
∴,
∴,
∴,
∴表示的点在线段BO上,
故选:B.
【点睛】
本题考查了无理数的估算,实数与数轴,正确估算无理数的大小是解本题的关键.
10、C
【分析】
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【详解】
解:,是整数,属于有理数;
是分数,属于有理数;
无理数有,,共2个
故选:C.
【点睛】
此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001……,等有这样规律的数.
二、填空题
1、0.4
【分析】
根据立方根的定义直接求解即可.
【详解】
解:∵,
∴0.064的立方根是0.4.
故答案为:0.4.
【点睛】
本题考查了立方根,解决本题的关键是熟记立方根的定义.
2、bc=a
【分析】
首先判断出这列数中,3的指数各项依次为 1,2,﹣1,3,﹣4,7,﹣11,18…,从第三个数起,前两数相除等于第三个数,可得这列数中的连续三个数,满足a÷b=c,据此解答即可.
【详解】
∵3,32,3﹣1,33,3﹣4,37,3﹣11,318,…,
,,,,,,…,
∴a,b,c满足的关系式是a÷b=c,即bc=a.
故答案为:bc=a.
【点睛】
此题考查了实数的规律问题,同底数幂的除法运算,负整数指数幂等知识,解题的关键是正确分析出题目中指数之间的规律.
3、<
【分析】
由得,再利用不等式的基本性质可得,从而可得答案.
【详解】
解:∵,
∴,
∴.
故答案为:<.
【点睛】
本题考查的是实数的大小比较,掌握实数的大小比较的方法是解题的关键.
4、18
【分析】
根据a*b=ab2+2a,可得:3*(−2)=3×(−2)2+2×3,据此求出算式的值是多少即可.
【详解】
解:∵a*b=ab2+2a,
∴3*(−2),
=3×(−2)2+2×3,
=3×4+6,
=12+6,
=18.
故答案为:18.
【点睛】
此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.
5、0.1
【分析】
先化简10﹣3=0.001,根据立方根的定义即可解答.
【详解】
解:10﹣3=0.001,0.001的立方根为0.1,
故答案为:0.1.
【点睛】
本题考查了立方根,解题的关键是掌握会求一个数的立方根.
三、解答题
1、x=5;y=2
【分析】
根据非负数的性质可得关于x、y的方程组,求解可得其值;
【详解】
解:由题意可得,
联立得 ,
解方程组得:,
∴x、y的值分别为5、2.
【点睛】
此题考查的是非负数的性质,解二元一次方程组,掌握绝对值及算术平方根的非负性是解决此题的关键.
2、(1)x=4或﹣2;(2)x=
【分析】
(1)先变形为(x﹣1)2=9,然后求9的平方根即可;
(2)先变形为x3=,再利用立方根的定义得到答案.
【详解】
解:(1)方程两边除以4得,(x﹣1)2=9,
∴x﹣1=±3,
∴x=4或﹣2;
(2)方程两边除以8得,x3=,
所以x=.
【点睛】
本题考查了平方根、立方根的运算,熟练掌握运算法则是解本题的关键.
3、5
【分析】
根据题意直接利用平方根以及立方根的性质得出x,y的值,进而利用算术平方根的定义得出答案.
【详解】
解:∵x-2的平方根是±2,
∴x-2=4,
解得:x=6,
∵x+2y+7的立方根是3,
∴6+2×y+7=27,
解得:y=7,
∴3x+y=25,
∴3x+y的算术平方根是5.
【点睛】
本题主要考查平方根以及立方根的性质、算术平方根,正确得出x,y的值是解题的关键.
4、(1)(2)
【分析】
(1)根据有理数的混合运算进行计算即可;
(2)先根据求一个数的立方根求得为,进而根据有理数的混合运算进行计算即可
【详解】
(1)原式
(2)原式
【点睛】
本题考查了求一个数的立方根,有理数的混合运算,正确的计算是解题的关键.
5、(1);(2)①;②
【分析】
(1)利用去绝对值符号的方法,立方根定义,平方根的定义对式子进行运算即可;
(2)①对等式进行开平方运算,再把x的系数转化为1即可;
②对等式进行开立方运算,再移项即可.
【详解】
解:(1)
=2(﹣2)﹣3
=﹣3;
(2)①
±3
x=±6;
②(x+3)3=﹣27
x+3=﹣3
x=﹣6.
【点睛】
本题主要考查实数的运算,立方根,平方根,解答的关键是对相应的运算法则的掌握与应用.
6、(1);(2)
【分析】
(1)根据等式的性质和平方根的意义进行计算即可;
(2)根据等式的性质和立方根的意义进行计算即可.
【详解】
解:(1),
两边都除以4得,,
所以,;
(2),
两边都减1得,,
所以,,
解得,.
【点睛】
本题考查等式的性质、立方根、平方根的意义,解题的关键是掌握等式的性质、平方根、立方根的意义是正确解答的关键.
7、
【分析】
先运用零指数幂、负整数指数幂、乘方、绝对值化简原式,然后再计算即可.
【详解】
解:原式=1-8+4+
=.
【点睛】
本题考查了零指数幂、负整数指数幂、绝对值、实数的加减法等知识点,熟练掌握各运算法则是解答本题的关键.
8、(1)1;(2).
【分析】
(1)计算乘方,零指数幂,算术平方根,负指数幂,再计算加减法即可;
(2)先立方根,零指数幂,绝对值化简,去括号合并即可.
【详解】
解:(1),
=,
=1;
(2),
=,
=.
【点睛】
本题考查实数混合计算,零指数幂,负指数幂,算术平方根,立方根,绝对值,掌握以上知识是解题关键.
9、.
【分析】
先化简绝对值、计算算术平方根与立方根,再计算实数的加减法即可得.
【详解】
解:原式
.
【点睛】
本题考查了算术平方根与立方根、实数的加减等知识点,熟练掌握各运算法则是解题关键.
10、这个长方体的长、宽、高分别为、、
【分析】
根据题意设这个长方体的长、宽、高分别为4x、2x、x,然后依据底面积为24cm2,列出关于x的方程,然后可求得x的值,最后再求得这个长方体的长、宽、高即可.
【详解】
解:设这个长方体的长、宽、高分别为4x、2x、x.
根据题意得:4x•2x=24,
解得:x=或x=﹣(舍去).
则4x=4,2x=2.
所以这个长方体的长、宽、高分别为4cm、2cm、cm.
【点睛】
本题主要考查的是算术平方根的定义,熟练掌握算术平方根的定义是解题的关键.
相关试卷
这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试综合训练题,共19页。试卷主要包含了的值等于,在下列各数,下列说法正确的是,实数﹣2的倒数是,下列各数是无理数的是,估算的值是在之间等内容,欢迎下载使用。
这是一份初中数学第十二章 实数综合与测试习题,共19页。试卷主要包含了已知a=,b=-|-|,c=,9的平方根是,3的算术平方根为等内容,欢迎下载使用。
这是一份2021学年第十二章 实数综合与测试课后练习题,共21页。试卷主要包含了若 ,则,化简计算﹣的结果是,下列四个数中,最小的数是,下列语句正确的是,下列各数中,最小的数是等内容,欢迎下载使用。