初中数学第十二章 实数综合与测试精练
展开
这是一份初中数学第十二章 实数综合与测试精练,共1页。试卷主要包含了有一个数值转换器,原理如下,下列说法正确的是,4的平方根是,在实数中,无理数的个数是等内容,欢迎下载使用。
沪教版(上海)七年级数学第二学期第十二章实数达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、a为有理数,定义运算符号▽:当a>-2时,▽a=-a;当a<-2时,▽a= a;当a=-2时,▽a= 0.根据这种运算,则▽[4+▽(2-5)]的值为( )A. B.7 C. D.12、下列等式正确的是( ).A. B. C. D.3、数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C所表示的数是( )A. B. C. D.4、有一个数值转换器,原理如下:当输入的x为64时,输出的y是( )A. B.2 C. D.5、在实数,,,,,,,0.1010010001…(相邻两个1中间依次多1个0)中,无理数有( ).A.2个 B.3个 C.4个 D.5个6、下列说法正确的是( )A.=±2 B.27的立方根是±3 C.9的平方根是3 D.9的平方根是±37、4的平方根是( )A.2 B.﹣2 C.±2 D.没有平方根8、如图,数轴上的点A,B,O,C,D分别表示数,,0,1,2,则表示数的点P应落在( ).A.线段AB上 B.线段BO上 C.线段OC上 D.线段CD上9、在实数中,无理数的个数是( )A.1 B.2 C.3 D.410、一个正数的两个平方根分别是2a与,则a的值为( )A.1 B.﹣1 C.2 D.﹣2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、选用适当的不等号填空:﹣_____﹣π.2、 “平方根节”是数学爱好者的节日,这一天的月份和日期的数字正好是当年年份最后两位数字的平方根,例如:2009年的3月3日,2016年的4月4日.请写出你喜欢的一个“平方根节”(题中所举的例子除外)______年_____月_______日.3、计算:_______.4、在实数范围内因式分解:y2﹣2y﹣1=__________________.5、已知、两个实数在数轴上的对应点如上图所示:请你用“”或“”完成填空:(1)________;(2)________ ;(3)________;(4)________;(5)________;(6)________三、解答题(10小题,每小题5分,共计50分)1、计算:(π-4)0+|-6|-+2、计算题:(1);(2).3、计算:4、(1)计算:;(2)求式中的x:(x+4)2=81.5、任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1.现对72进行如下操作:72第一次[]=8,第二次[]=2,第三次[]=1,这样对72只需进行3次操作变为1.(1)对10进行1次操作后变为_______,对200进行3次作后变为_______;(2)对实数m恰进行2次操作后变成1,则m最小可以取到_______;(3)若正整数m进行3次操作后变为1,求m的最大值.6、已知正数a的两个不同平方根分别是2x﹣2和6﹣3x,a﹣4b的算术平方根是4.(1)求这个正数a以及b的值;(2)求b2+3a﹣8的立方根.7、求下列各式中的x:(1);(2).8、解方程:(1)x2=81;(2)(x﹣1)3=27.9、计算:(1); (2).10、把下列各数分别填入相应的集合里.,,0,,,,,,0.1010010001…(每两个1之间依次多一个0)(1)整数集合:{ …}(2)正数集合:{ …}(3)无理数集合:{ …} -参考答案-一、单选题1、A【分析】定义运算符号▽:当a>-2时,▽a=-a;当a<-2时,▽a= a;当a=-2时,▽a= 0.先判断a的大小,然后按照题中的运算法则求解即可.【详解】解:且当时,▽a=a,▽(-3)=-3,4+▽(2-5)=4-3=1>-2,当a>-2时,▽a=-a,▽[4+▽(2-5)]=▽1=-1,故选:A.【点睛】此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.2、由不等式的性质可知:5-2<−2<6-2,即3<−2<故选:C.【点睛】本题主要考查的是估算无理数的大小,明确被开方数越大对应的算术平方根也越大是解题的关键.4.C【分析】分别利用平方根和算术平方根以及立方根得出各选项是否正确即可.【详解】解:A、,故此选项错误;B、,故此选项错误;C、由B得此选项正确;D、,故此选项错误.故选:C.【点睛】此题主要考查了立方根、平方根、算术平方根等知识,正确把握各定义是解题关键.3、C【分析】首先根据数轴上表示1,的对应点分别为A,B可以求出线段AB的长度,然后由AB=AC利用两点间的距离公式便可解答.【详解】解:∵数轴上表示1,的对应点分别为A,B,∴AB=−1,∵点B关于点A的对称点为C,∴AC=AB.∴点C的坐标为:1−(−1)=2−.故选:C.【点睛】本题考查的知识点为:求数轴上两点间的距离就让右边的数减去左边的数.知道两点间的距离,求较小的数,就用较大的数减去两点间的距离.4、C【分析】直接利用立方根以及算术平方根、无理数分析得出答案.【详解】解:由题意可得:64的立方根为4,4的算术平方根是2,2的算术平方根是,即.故选:C.【点睛】本题主要考查了立方根以及算术平方根、无理数的定义,解题的关键是正确掌求一个数的算术平方根.5、D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:是有理数,是无限循环小数,是有理数,是分数,是有理数,,,,,0.1010010001…(相邻两个1中间依次多1个0)是无理数,共个,故选:D.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6、D【分析】根据平方根、立方根和算术平方根的性质计算即可;【详解】=2,故A错误;27的立方根是3,故B错误;9的平方根是±3,故C错误;9的平方根是±3,故D正确;故选D.【点睛】本题主要考查了平方根的性质,立方根的性质和算术平方根的性质,准确计算是解题的关键.7、C【分析】根据平方根的定义(如果一个数x的平方等于a,那么这个数x就叫做a的平方根)和性质(一个正数有两个实平方根,它们互为相反数)直接得出即可.【详解】解:4的平方根,即:,故选:C.【点睛】题目主要考查平方根的定义和性质,熟练掌握其性质及求法是解题关键.8、B【分析】根据,得到,根据数轴与实数的关系解答.【详解】解:∵,∴,∴,∴,∴表示的点在线段BO上,故选:B.【点睛】本题考查了无理数的估算,实数与数轴,正确估算无理数的大小是解本题的关键.9、B【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:=2,=2,,∴无理数只有,共2个.故选:B.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.10、D【分析】根据正数有两个平方根,且互为相反数,即可求解.【详解】解:根据题意得: ,解得: .故选:D【点睛】本题主要考查了平方根的性质,熟练掌握正数有两个平方根,且互为相反数;0的平方根为0;负数没有平方根是解题的关键.二、填空题1、<【分析】先确定的取值范围,再利用实数比较大小的方法进行比较即可.【详解】解:∵,∴5<<6,∴>π,∴﹣<﹣π,故答案为:<.【点睛】此题主要考查了实数的大小比较,关键是掌握正实数都大于0,负实数都小于0,正实数大于-切负实数,两个负实数绝对值大的反而小.2、2025 5 5 【分析】首先确定月份和日子,最后确定年份即可.(答案不唯一).【详解】解:2025年5月5日.(答案不唯一).故答案是:2025,5,5.【点睛】本题考查了平方根的应用,解题的关键是正确理解三个数字的关系.3、1【分析】根据算术平方根的计算方法求解即可.【详解】解:.故答案为:1.【点睛】此题考查了求解算术平方根,解题的关键是熟练掌握算术平方根的计算方法.4、(y﹣1+)(y﹣1﹣)【分析】变形整式为y2﹣2y+1﹣2,前三项利用完全平方公式,再利用平方差公式因式分解.【详解】解:y2﹣2y﹣1=y2﹣2y+1﹣2=(y﹣1)2﹣()2=(y﹣1+)(y﹣1﹣).故答案为:(y﹣1+)(y﹣1﹣).【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式因式分解的方法是解题的关键.5、< > < > > < 【分析】根据数轴可知:b>0,a<0,根据绝对值的非负性得|a|>|b|,即可得.【详解】解: ∵由数轴可知:b>0,a<0,|a|>|b|,∴(1)a<b,(2)|a|>|b|,(3)a+b<0,(4)b−a>0,(5)a+b>a−b,(6),故答案为:(1)<;(2)>;(3)<;(4)>;(5)>;(6)<.【点睛】本题考查了数轴与实数,绝对值的非负性,解题的关键是掌握绝对值的非负性.三、解答题1、9【分析】根据零指数幂,绝对值,负整数指数幂的性质和算术平方根分别计算,再将结果相加即可求解.【详解】解:原式【点睛】本题考查了零指数幂,绝对值,负整数指数幂的性质以及求一个数的算术平方根,熟练掌握这些性质,准确计算是解题关键.2、(1)(2)【分析】(1)先用同底数幂、幂的乘方、积的乘方运算,然后再合并即可;(2)先运用算术平方根、负整数次幂、绝对值、零次幂的知识化简各数,然后再计算即可.(1)解:原式=(2)解:原式=【点睛】本题主要考查了整式的运算、实数的运算等知识点,灵活运用相关运算法则成为解答本题的关键.3、【分析】分别计算乘方运算,零次幂,算术平方根,负整数指数幂,再合并即可.【详解】解:原式【点睛】本题考查的是零次幂的含义,求解一个数的算术平方根,负整数指数幂的含义,掌握以上基础运算是解题的关键.4、(1);(2)或【分析】(1)分别计算算术平方根、立方根、绝对值,再进行加减即可;(2)根据平方根的意义,计算出x的值.【详解】解:(1)原式;(2)由平方根的意义得:或∴或.【点睛】本题考查了平方根意义和实数的运算.题目难度不大,掌握平方根、立方根、绝对值的意义是解决本题的关键.5、(1)3;1;(2);(3)的最大值为255【详解】解:(1)∵,∴,∴,∴对10进行1次操作后变为3;同理可得,∴,同理可得,∴,同理可得,∴,∴对200进行3次作后变为1,故答案为:3;1;(2)设m进行第一次操作后的数为x,∵,∴.∴.∴.∵要经过两次操作.∴.∴.∴.故答案为:.(3)设m经过第一次操作后的数为n,经过第二次操作后的数为x,∵,∴.∴.∴..∴.∵要经过3次操作,故.∴.∵是整数.∴的最大值为255.【点睛】本题考查取整函数及无理数的估计,正确理解取整含义是求解本题的关键.6、(1),;(2)b2+3a﹣8的立方根是5【分析】(1)根据题意可得,2x﹣2+6﹣3x=0,即可求出a=36,再根据a﹣4b的算术平方根是4,求出b的值即可;(2)将(1)中所求a、b的值代入代数式b2+3a﹣8求值,再根据立方根定义计算即可求解.【详解】解:(1)∵正数a的两个不同平方根分别是2x﹣2和6﹣3x,∴2x﹣2+6﹣3x=0,∴x=4,∴2x﹣2=6,∴a=36,∵a﹣4b的算术平方根是4,∴a﹣4b=16,∴36-4b=16∴b=5;(2)当a=36,b=5时,b2+3a﹣8=25+36×3﹣8=125,∴b2+3a﹣8的立方根是5.【点睛】本题考查平方根的性质,算术平方根定义,立方根定义,掌握平方根的性质,算术平方根定义,立方根定义是解题关键.7、(1);(2)【分析】(1)方程整理后,开方即可求出x的值;(2)方程开立方即可求出x的值.【详解】(1)等式两边同时除以2得:,两边开平方得:;(2)两边开立方得:,等式两边同时减去1得:.【点睛】本题考查了立方根以及平方根,熟练掌握各自的定义是解本题的关键.8、(1)x=±9;(2)x=4【分析】(1)方程利用平方根定义开方即可求出解;(2)方程利用立方根定义开立方即可求出解.【详解】解:(1)开方得:x=±9;(2)开立方得:x﹣1=3,解得:x=4.【点睛】本题考查了利用平方根,立方根定义解方程,掌握平方根和立方根的定义是解题的关键.平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数),立方根:如果x3=a,则x叫做a的立方根,记作“”(a称为被开方数).9、(1)1;(2)2【分析】(1)根据零指数幂定义,负整数指数幂定义及绝对值的性质分别化简,再计算加减法;(2)根据同分母分式的加减法法则计算.【详解】解:(1)原式=1+2-2 =1.(2)原式= = =2.【点睛】此题考查了计算能力:实数的混合运算,同分母分式的加减法,正确掌握零指数幂定义,负整数指数幂定义,绝对值的性质,同分母分式的加减法法则是解题的关键..10、(1)整数集合:;(2)正数集合:;(3)无理数集合:.【分析】根据实数分类解题,实数分为有理数与无理数,无限不循环小数和开方不能开尽的数是无理数,整数和分数统称为有理数,整数包含正整数、0、负整数, (1)根据整数的分类即可得;(2)根据正数的分类即可得;(3)根据无理数的分类即可得.【详解】解:+5是正整数,是无理数, 0是整数,-3.14是正分数,是正分数,-12是负整数,是负无理数,是正整数,(每两个1之间依次多一个0)是无理数;故(1)整数集合:;(2)正数集合:;(3)无理数集合:.【点睛】本题考查实数的分类、有理数的分类等知识,掌握相关数的分类是解题关键.
相关试卷
这是一份数学七年级下册第十二章 实数综合与测试课堂检测,共19页。试卷主要包含了16的平方根是,下列说法中正确的有,以下正方形的边长是无理数的是,下列各组数中相等的是,估计的值应该在.,9的平方根是等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试一课一练,共26页。试卷主要包含了下列运算正确的是,a为有理数,定义运算符号▽,关于的叙述,错误的是,下列等式正确的是,下列判断,若关于x的方程等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试随堂练习题,共20页。试卷主要包含了在0.1010010001…,化简计算﹣的结果是,在下列各数,下列各式正确的是.,下列运算正确的是等内容,欢迎下载使用。