初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试同步达标检测题
展开沪教版(上海)七年级数学第二学期第十二章实数综合测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在实数中,无理数的个数是( )
A.1 B.2 C.3 D.4
2、下列说法正确的是( )
A.是最小的正无理数 B.绝对值最小的实数不存在
C.两个无理数的和不一定是无理数 D.有理数与数轴上的点一一对应
3、在实数|﹣3.14|,﹣3,﹣,﹣π中,最小的数是( )
A.﹣ B.﹣3 C.|﹣3.14| D.﹣π
4、在3.14,,,,,,,中,无理数有( )
A.1个 B.2个 C.3个 D.4个
5、若,那么( )
A.1 B.-1 C.-3 D.-5
6、16的平方根是( )
A.±8 B.8 C.4 D.±4
7、下列各组数中相等的是( )
A.和3.14 B.25%和 C.和0.625 D.13.2%和1.32
8、一个正数的两个平方根分别是2a与,则a的值为( )
A.1 B.﹣1 C.2 D.﹣2
9、以下正方形的边长是无理数的是( )
A.面积为9的正方形 B.面积为49的正方形
C.面积为8的正方形 D.面积为25的正方形
10、9的平方根是( )
A.±9 B.9 C.±3 D.3
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知x,y为实数,且,则的值为______.
2、已知432=1849,442=1936,452=2025,462=2116,若n为整数且n<<n+1,则n的值是________.
3、已知、两个实数在数轴上的对应点如上图所示:请你用“”或“”完成填空:
(1)________;(2)________ ;(3)________;
(4)________;(5)________;(6)________
4、按一定规律排列的一列数:3,32,3﹣1,33,3-4,37,3﹣11,318,…,若a,b,c表示这列数中的连续三个数,猜想a,b,c满足的关系式是______.
5、已知,则|x﹣3|+|x﹣1|=___.
三、解答题(10小题,每小题5分,共计50分)
1、计算:
(1);
(2).
2、求下列各式中的x:
(1);
(2).
3、对于有理数a,b,定义运算:
(1)计算的值;
(2)填空_______:(填“>”、“<”或“=”)
(3)与相等吗?若相等,请说明理由.
4、计算:.
5、计算
(1)
(2)
6、计算:
7、若一个四位自然数满足千位数字比十位数字大3,百位数字比个位数字大3,我们称这个数为“多多数”.将一个“多多数”各个数位上的数字倒序排列可得到一个新的四位数,记.
例如:,∴,则
(1)判断7643和4631是否为“多多数”?请说明理由;
(2)若为一个能被13整除的“多多数”,且,求满足条件的“多多数”.
8、求下列各数的平方根:
(1)121 (2) (3)(-13)2 (4)
9、如图,将一个边长为a+b的正方形图形分割成四部分(两个正方形和两个长方形),请认真观察图形,解答下列问题:
(1)根据图中条件,请用两种方法表示该图形的总面积(用含a、b的代数式表示出来);
(2)如果图中的a,b(a>b)满足a2+b2=57,ab=12,求a+b的值.
10、已知a2=16,b3=27,求ab的值.
-参考答案-
一、单选题
1、B
【分析】
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【详解】
解:=2,=2,,
∴无理数只有,共2个.
故选:B.
【点睛】
此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
2、C
【分析】
利用正无理数,绝对值,以及数轴的性质判断即可.
【详解】
解:、不存在最小的正无理数,不符合题意;
、绝对值最小的实数是0,不符合题意;
、两个无理数的和不一定是无理数,例如:,符合题意;
、实数与数轴上的点一一对应,不符合题意.
故选:C.
【点睛】
本题考查了实数的运算,实数与数轴,解题的关键是熟练掌握各自的性质.
3、D
【分析】
把数字从大到小排序,然后再找最小数.
【详解】
解:|﹣3.14|=3.14.|﹣3|=3,|-|=,|﹣π|=π.
∴﹣π<﹣3<﹣<|﹣3.14|,
故选:D.
【点睛】
本题考查实数大小比较,掌握比较方法是本题关键.
4、C
【分析】
分别根据无理数、有理数的定义即可判定选择项.
【详解】
解:3.14是有理数,是无理数,是无理数,是有理数,是有理数,是无理数,是有理数,是有理数;
∴无理数有三个,
故选C.
【点睛】
此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.
5、D
【分析】
由非负数之和为,可得且,解方程求得,,代入问题得解.
【详解】
解: ,
且,
解得,,
,
故选:D
【点睛】
本题考查了代数式的值,正确理解绝对值及算数平方根的非负性是解答本题的关键.
6、D
【分析】
根据平方根可直接进行求解.
【详解】
解:∵(±4)2=16,
∴16的平方根是±4.
故选:D.
【点睛】
本题主要考查平方根,熟练掌握求一个数的平方根是解题的关键.
7、B
【分析】
是一个无限不循环小数,约等于3.142,3.142>3.14,即>3.14;=1÷4=0.25,把0.25的小数点向右移动两位添上百分号就是25%;即25%=;=3÷8=0.375,0.375<0.625,即<0.625;把13.2%小数点向左移动两位去掉百分号就是0.132,0.132<1.32,即13.2%<1.32.
【详解】
解:A 、≈3.142,3.142>3.14,即>3.14;
B 、=1÷4=0.25=25%=;
C 、=3÷8=0.375,0.375<0.625,即<0.625;
D 、13.2%=0.132,0.132<1.32,即13.2%<1.32.
故选:B.
【点睛】
此题主要是考查小数、分数、百分数的互化及圆周率的限值.小数、分数、百分数、无限小数(循环小数)的大小比较,通常都化成保留一定位数的小数,再根据小数的大小比较方法进行比较,这样可以省去通分的麻烦.
8、D
【分析】
根据正数有两个平方根,且互为相反数,即可求解.
【详解】
解:根据题意得: ,
解得: .
故选:D
【点睛】
本题主要考查了平方根的性质,熟练掌握正数有两个平方根,且互为相反数;0的平方根为0;负数没有平方根是解题的关键.
9、C
【分析】
理解无理数的分类:无限不循环小数或开方不能开尽的数,求出正方形边长由此判断即可得出.
【详解】
解:A、面积为9的正方形的边长为3,是整数,属于有理数,故本选项不合题意;
B、面积为49的正方形的边长为7,是整数,属于有理数,故本选项不合题意;
C、面积为8的正方形的边长为,是无理数,故本选项符合题意;
D、面积为25的正方形的边长为5,是整数,属于有理数,故本选项不合题意.
故选:C.
【点睛】
本题主要考查了无理数的分类,准确掌握无理数的分类是解题关键.
10、C
【分析】
根据平方根的定义解答即可.
【详解】
解:∵(±3)2=9,
∴9的平方根是±3.
故选:C.
【点睛】
此题考查了平方根的定义,解题的关键是熟练掌握平方根的定义.如果一个数的平方等于a,即,那么这个数叫做a的平方根.正数有两个平方根,且互为相反数,其中正的那个数也叫算数平方根,0的平方根和算数平方根都是0,负数没有平方根,也没有算术平方根.
二、填空题
1、2
【分析】
根据偶次幂及算术平方根的非负性可得x、y的值,然后问题可求解.
【详解】
解:∵,
∴,
∴,
∴;
故答案为2.
【点睛】
本题主要考查偶次幂及算术平方根的非负性,熟练掌握偶次幂及算术平方根的非负性是解题的关键.
2、44
【分析】
由题意可直接进行求解.
【详解】
解:∵442=1936,452=2025,
∴,
∴,
∴;
故答案为44.
【点睛】
本题主要考查无理数的估算,熟练掌握无理数的估算是解题的关键.
3、< > < > > <
【分析】
根据数轴可知:b>0,a<0,根据绝对值的非负性得|a|>|b|,即可得.
【详解】
解: ∵由数轴可知:b>0,a<0,|a|>|b|,
∴(1)a<b,(2)|a|>|b|,(3)a+b<0,
(4)b−a>0,(5)a+b>a−b,(6),
故答案为:(1)<;(2)>;(3)<;(4)>;(5)>;(6)<.
【点睛】
本题考查了数轴与实数,绝对值的非负性,解题的关键是掌握绝对值的非负性.
4、bc=a
【分析】
首先判断出这列数中,3的指数各项依次为 1,2,﹣1,3,﹣4,7,﹣11,18…,从第三个数起,前两数相除等于第三个数,可得这列数中的连续三个数,满足a÷b=c,据此解答即可.
【详解】
∵3,32,3﹣1,33,3﹣4,37,3﹣11,318,…,
,,,,,,…,
∴a,b,c满足的关系式是a÷b=c,即bc=a.
故答案为:bc=a.
【点睛】
此题考查了实数的规律问题,同底数幂的除法运算,负整数指数幂等知识,解题的关键是正确分析出题目中指数之间的规律.
5、2
【分析】
得出x-3<0,x-1>0,再利用绝对值的代数意义去括号合并即可得到结果.
【详解】
解:∵,1<<2,2<<3,
∴x-3<0,x-1>0,
∴|x﹣3|+|x-1|
=3-x+(x-1)
=3-x+x-1
=2.
故答案为:2.
【点睛】
本题考查了整式的加减运算,涉及的知识有:无理数的估算,绝对值的代数意义,数轴,去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.
三、解答题
1、(1)1;(2)
【分析】
(1)先计算负指数幂,零指数幂,绝对值,再计算加法即可;
(2)先调整符号,利用平分差公式计算,再利用完全平方公式展开计算去括号即可.
【详解】
解:(1),
=,
=1;
(2),
=,
=,
=,
=.
【点睛】
本题考查实数混合计算,负指数幂,零指数幂,整式乘法公式混合计算,掌握实数混合计算,负指数幂,零指数幂,整式乘法公式混合计算是解题关键.
2、
(1)或
(2)
【分析】
(1)根据平方根定义开方,求出两个方程的解即可;
(2)先移项,再根据立方根定义得出一个一元一次方程,求出方程的解即可.
(1)
开平方得,
∴
解得,或
(2)
移项得,
方程两边同除以8,得,
开立方,得,
【点睛】
本题考查了平方根和立方根的应用,主要考查学生的理解能力和计算能力.
3、(1);(2)=;(3)相等,证明见详解.
【分析】
(1)按照给定的运算程序,一步一步计算即可;
(2)先按新定义运算,再比较大小;
(3)按新定义分别运算即可说明理由.
【详解】
解:(1);
(2),
,
∴=,
故答案是:=;
(3)相等
∵,,
∴=.
【点睛】
此题是定义新运算题型,直接把对应的数字代入所给的式子可求出所要的结果.
4、2
【分析】
先分别求解绝对值,算术平方根,乘方运算的结果,再进行加减运算即可.
【详解】
解:
【点睛】
本题考查的是求解一个数的绝对值,算术平方根,有理数的乘方运算,掌握以上基本运算的运算法则是解本题的关键.
5、
(1)-2
(2)1
【分析】
(1)先分别计算开平方和开立方,再进行有理数的加、减混合计算即可;
(2)先去绝对值,去括号,再进行实数的加、减混合计算即可;
(1)
解:
;
(2)
解:
.
【点睛】
本题考查实数的混合运算.掌握运算方法与运算顺序是解出本题的关键.
6、
【分析】
分别计算乘方运算,零次幂,算术平方根,负整数指数幂,再合并即可.
【详解】
解:原式
【点睛】
本题考查的是零次幂的含义,求解一个数的算术平方根,负整数指数幂的含义,掌握以上基础运算是解题的关键.
7、
(1)7643是“多多数”, 4631不是“多多数”,
(2)5421或6734
【分析】
(1)根据新定义,即可判断;
(2)设A的个位数字为x,十位数字为y,则百位数字为x+3,千位数字为y+3,根据新定义,分别表示出A、F(A),根据为一个能被13整除的“多多数”,且,,列出关系式,进而求解.
(1)
在7643中,7-4=3,6-3=3,
∴7643是“多多数”,
在4631中,3-3=1,6-1=5,
∴4631不是“多多数”,
(2)
设A的个位数字为x,十位数字为y,则百位数字为x+3,千位数字为y+3,
∴A表示的数为
∴
∴
∵
∴
∴
∵个位数字为x,十位数字为y,则百位数字为x+3,千位数字为y+3,
∴,解得
∴x、y的范围为,且x、y为整数
∵若为一个能被13整除的“多多数”,
∴
当时,,,
y的值可以为0、1、2、3、4、5、6,分别代入后结果是13的倍数的是
同理,当时,,,没有符合条件的y;
当时,,,没有符合条件的y;
当时,,,符合条件的;
当时,,,没有符合条件的y;
当时,,,没有符合条件的y;
综上符合条件的是、
当时A为5421,
当时A为6734
综上足条件的“多多数”为5421或6734.
【点睛】
本题考查整式运算的应用、解不等式,是一道新定义题目,解题的关键是能够根据定义列出关系式并确定个位和十位数的取值范围,进而求解.
8、 (1)±11; (2) ; (3)±13; (4)±8
【分析】
(1)直接根据平方根的定义求解;
(2)把带分数化成假分数,再根据平方根的定义求解;
(3)(4)先化简,再根据平方根的定义求解.
【详解】
含有乘方运算先求出它的幂,再开平方.
(1)因为(±11)2=121,所以121的平方根是±11;
(2),因为, 所以的平方根是;
(3)(-13)2=169,因为(±13)2=169,所以(-13)2的平方根是±13;
(4)-(-4)3=64,因为(±8)2=64,所以-(-4)3的平方根是±8.
【点睛】
本题考查了平方根,开方运算是解题关键,注意正数的平方根有两个,它们互为相反数.
9、(1)或;(2)9
【分析】
(1)由大正方形的边长为可得面积,由大正方形由两个小正方形与两个长方形组成,可利用面积和表示大正方形的面积,从而可得答案;
(2)由(1)可得:再把a2+b2=57,ab=12,利用平方根的含义解方程即可.
【详解】
解:(1) 大正方形的边长为
大正方形由两个小正方形与两个长方形组成,
(2)由(1)得:
a2+b2=57,ab=12,
则
【点睛】
本题考查的是完全平方公式的几何背景,利用平方根的含义解方程,掌握“完全平方公式在几何图形中的应用”是解本题的关键.
10、64或﹣64
【分析】
根据平方根、立方根、有理数的乘方解决此题.
【详解】
解:∵a2=16,b3=27,
∴a=±4,b=3.
当a=4,b=3时,ab=43=64.
当a=﹣4,b=3时,ab=(﹣4)3=﹣64.
综上:ab=64或﹣64.
【点睛】
本题主要考查立方根、平方根及有理数的乘方运算,熟练掌握立方根、平方根及有理数的乘方运算是解题的关键.
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试复习练习题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试复习练习题,共19页。试卷主要包含了下列说法正确的是,下列等式正确的是,下列说法中错误的是,下列实数比较大小正确的是等内容,欢迎下载使用。
沪教版 (五四制)七年级下册第十二章 实数综合与测试练习: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试练习,共18页。试卷主要包含了的相反数是,下列实数比较大小正确的是,﹣π,﹣3,,的大小顺序是,以下正方形的边长是无理数的是,10的算术平方根是,的值等于等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试测试题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试测试题,共19页。试卷主要包含了下列等式正确的是,估算的值是在之间,下列说法中,正确的是,实数﹣2的倒数是等内容,欢迎下载使用。