初中数学北京课改版八年级下册第十五章 四边形综合与测试同步测试题
展开
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试同步测试题,共23页。
京改版八年级数学下册第十五章四边形章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若一个正多边形的每一个外角都等于36°,则这个正多边形的边数是( )A.7 B.8 C.9 D.102、如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是( )A.AB=BE B.DE⊥DC C.∠ADB=90° D.CE⊥DE3、下列图中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.4、下列图案中既是轴对称图形又是中心对称图形的是( )A. B. C. D.5、在Rt△ABC中,∠C=90°,若D为斜边AB上的中点,AB的长为10,则DC的长为( )A.5 B.4 C.3 D.26、如图,矩形ABCD的对角线AC和BD相交于点O,若∠AOD=120°,AC=16,则AB的长为( )A.16 B.12 C.8 D.47、如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为( )A.180° B.360°C.540° D.不能确定8、 “垃圾分类,利国利民”,在2019年7月1日起上海开始正式实施垃圾分类,到2020年底先行先试的46个重点城市,要基本建成垃圾分类处理系统.以下四类垃圾分类标志的图形,其中既是轴对称图形又是中心对称图形的是( )A.可回收物 B.有害垃圾 C.厨余垃圾 D.其他垃圾9、下列图形中,既是轴对称图形又是中心对称图形的是( ).A. B.C. D.10、下列图形既是中心对称图形,又是轴对称图形的是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平行四边形ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC的长为_____.2、如图,平行四边形ABCD,AD=5,AB=8,点A的坐标为(-3,0)点C的坐标为______.3、菱形ABCD的周长为,对角线AC和BD相交于点O,AO:BO=1:2,则菱形ABCD的面积为________.4、点P(1,2)关于原点中心对称的点的坐标为_______.5、一个正多边形的每个外角都等于45°,那么这个正多边形的内角和为______度.三、解答题(5小题,每小题10分,共计50分)1、如图都是由边长为1的小等边三角形构成的网格图,每个网格图中有3个小等边三角形已涂上阴影.(1)请在下面①②③三个网格图中分别涂上一个三角形,使得4个阴影小等边三角形组成一个轴对称图形(3个图形中所涂三角形不同);(2)在④⑤两个网格图中分别涂上一个三角形,使得4个阴影小等边三角形组成一个中心对称图形(2个图形中所涂三角形不同).2、在平面直角坐标系中,过A(0,4)的直线a垂直于y轴,点M(9,4)为直线a上一点,若点P从点M出发,以每秒2cm的速度沿直线a向左移动,点Q从原点同时出发,以每秒1cm的速度沿x轴向右移动,(1)几秒后PQ平行于y轴?(2)在点P、Q运动的过程中,若线段OQ=2AP,求点P的坐标.3、如图,已知在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,点E是边BC延长线上一点,连接AE、DE,过点C作CF⊥DE于点F,且DF=EF. (1)求证:AD=CE. (2)若CD=5,AC=6,求△AEB的面积.4、已知:如图:五边形ABCDE的内角都相等,DF⊥AB.(1)则∠CDF= (2)若ED=CD,AE=BC,求证:AF=BF.5、(教材重现)如图是数学教材第135页的部分截图.在多边形中,三角形是最基本的图形.如图4.4.5所示,每一个多边形都可以分割成若干个三角形.数一数每个多边形中三角形的个数,你能发现什么规律?在多边形中,连接不相邻的两个顶点,所得到的线段称为多边形的对角线.(问题思考)结合如图思考,从多边形的一个顶点出发,可以得到的对角线的数量,并填写表:多边形边数四五六……十二……n从一个顶点出发,得到对角线的数量1条 …… …… (问题探究)n边形有n个顶点,每个顶点分别连接对角线后,每条对角线重复连接了一次,由此可推导出,n边形共有 对角线(用含有n的代数式表示).(问题拓展)(1)已知平面上4个点,任意三点不在同一直线上,一共可以连接 条线段.(2)已知平面上共有15个点,任意三点不在同一直线上,一共可以连接 条线段.(3)已知平面上共有x个点,任意三点不在同一直线上,一共可以连接 条线段(用含有x的代数式表示,不必化简). -参考答案-一、单选题1、D【分析】根据多边形外角和定理求出正多边形的边数.【详解】∵正多边形的每一个外角都等于36°,∴正多边形的边数==10.故选:D.【点睛】本题考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.2、B【分析】先证明四边形BCED为平行四边形,再根据矩形的判定进行解答.【详解】解:∵四边形ABCD为平行四边形,∴AD∥BC,且AD=BC,又∵AD=DE,∴DE∥BC,且DE=BC,∴四边形BCED为平行四边形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴□DBCE为矩形,故本选项不符合题意;B、∵DE⊥DC,∴∠EDB=90°+∠CDB>90°,∴四边形DBCE不能为矩形,故本选项符合题意;C、∵∠ADB=90°,∴∠EDB=90°,∴□DBCE为矩形,故本选项不符合题意;D、∵CE⊥DE,∴∠CED=90°,∴□DBCE为矩形,故本选项不符合题意.故选:B.【点睛】本题考查了平行四边形的判定和性质、矩形的判定等知识,判定四边形BCED为平行四边形是解题的关键.3、D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、不是轴对称图形,也不是中心对称图形.故本选项不合题意;B、是轴对称图形,不是中心对称图形.故本选项不合题意;C、不是轴对称图形,是中心对称图形.故本选项不合题意;D、既是轴对称图形又是中心对称图形.故本选项符合题意.故选:D.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4、B【详解】A.是轴对称图形,不是中心对称图形,故不符合题意;B. 既是轴对称图形,又是中心对称图形,故符合题意;C.是轴对称图形,不是中心对称图形,故不符合题意;D.既不是轴对称图形,也不是中心对称图形,故不符合题意;故选B【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.5、A【分析】利用直角三角形斜边的中线的性质可得答案.【详解】解:∵∠C=90°,若D为斜边AB上的中点,
∴CD=AB,
∵AB的长为10,
∴DC=5,
故选:A.【点睛】此题主要考查了直角三角形斜边的中线,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.6、C【分析】由题意可得AO=BO=CO=DO=8,可证△ABO是等边三角形,可得AB=8.【详解】解:∵四边形ABCD是矩形,∴AC=2AO=2CO,BD=2BO=2DO,AC=BD=16,∴OA=OB=8,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=AO=BO=8,故选:C.【点睛】本题考查了矩形的性质,等边三角形的性质和判定,熟练掌握矩形的性质是本题的关键.7、B【分析】设BE与DF交于点M,BE与AC交于点N,根据三角形的外角性质,可得 ,再根据四边形的内角和等于360°,即可求解.【详解】解:设BE与DF交于点M,BE与AC交于点N,∵ ,∴ ,∵,∴ .故选:B【点睛】本题主要考查了三角形的外角性质,多边形的内角和,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和;四边形的内角和等于360°是解题的关键.8、B【分析】由题意根据轴对称图形和中心对称图形的定义对各选项进行判断,即可得出答案.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、既是轴对称图形,也是中心对称图形,故此选项符合题意;C、是轴对称图形,不是中心对称图形,故此选项不合题意;D、既不是轴对称图形,也不是中心对称图形,故此选项不符合题意;故选:B.【点睛】本题考查中心对称图形与轴对称图形的概念,注意掌握判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.9、C【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;B.既不是轴对称图形,又不是中心对称图形,故本选项不符合题意;C.既是轴对称图形,又是中心对称图形,故本选项符合题意;D.是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.10、D【分析】一个图形绕着某固定点旋转180度后能够与原来的图形重合,则称这个图形是中心对称图形,这个固定点叫做对称中心;如果一个图形沿着某条直线对折后,直线两旁的部分能够重合,则称这个图形是轴对称图形,这条直线叫做对称轴;根据这两个概念逐项判断即可.【详解】A、既不是中心对称图形,也不是轴对称图形,故不符合题意;B、是轴对称图形,但不是中心对称图形,故不符合题意;C、是中心对称图形,但不是轴对称图形,故不符合题意;D、既是中心对称图形,也是轴对称图形,故符合题意.【点睛】本题考查了中心对称图形与轴对称图形的识别,掌握它们的概念是关键.二、填空题1、10或14或10【分析】利用BF平分∠ABC, CE平分∠BCD,以及平行关系,分别求出、,通过和是否相交,分两类情况讨论,最后通过边之间的关系,求出的长即可.【详解】解: 四边形ABCD是平行四边形,,,,,,BF平分∠ABC, CE平分∠BCD,,, ,, 由等角对等边可知:,, 情况1:当与相交时,如下图所示:
, ,,情况2:当与不相交时,如下图所示:
,,故答案为:10或14.【点睛】本题主要是考查了平行四边形的性质,熟练运用平行关系+角平分线证边相等,是解决本题的关键,还要注意根据和是否相交,本题分两类情况,如果没考虑仔细,会漏掉一种情况.2、(8,4)【分析】先根据勾股定理得到OD的长,即可得到点D的坐标,再根据平行四边形的性质和平行x轴两点坐标特征即可得到点C的坐标.【详解】解:∵点A的坐标为(-3,0),在Rt△ADO中,AD=5, AO=3,,∴OD==,∴D(0,4),∵平行四边形ABCD,∴AB=CD=8,AB∥CD,∵AB在x轴上,∴CD∥x轴,∴C、D两点的纵坐标相同,∴C(8,4) .故答案为(8,4).【点睛】本题考查平行四边形性质,勾股定理,平行x轴两点坐标特征,解答本题的关键是熟练掌握平行于x轴的直线上的点的纵坐标相同,平行于y轴的直线上的点的横坐标相同.3、4【分析】根据菱形的性质求得边长,根据AO:BO=1:2,求得对角线的长,进而根据菱形的面积等于对角线乘积的一半即可求解.【详解】解:如图四边形是菱形,菱形ABCD的周长为, AO:BO=1:2,故答案为:4【点睛】本题考查了菱形的性质,勾股定理,掌握菱形的面积等于对角线乘积的一半是解题的关键.4、(-1,-2)【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y).据此作答.【详解】解:根据中心对称的性质,得点P(1,2)关于原点中心对称的点的坐标为(-1,-2).故答案为:(-1,-2).【点睛】本题主要考查了关于原点对称的点的坐标特征,熟知关于原点对称的点的坐标特征是解题的关键.5、1080【分析】利用多边形的外角和为360°计算出这个正多边形的边数,然后再根据内角和公式进行求解即可.【详解】解:∵正多边形的每一个外角都等于,∴正多边形的边数为360°÷45°=8,所有这个正多边形的内角和为(8-2)×180°=1080°.故答案为:1080.【点睛】本题考查了多边形内角与外角等知识,熟知多边形内角和定理(n﹣2)•180 °(n≥3)和多边形的外角和等于360°是解题关键.三、解答题1、(1)见解析;(2)见解析【分析】(1)直接利用轴对称图形的性质得出符合题意的答案;(2)直接利用中心对称图形的性质得出符合题意的答案.【详解】解:(1)如图所示:①②③都是轴对称图形;(2)如图所示:④⑤都是中心对称图形..【点睛】此题主要考查了利用轴对称设计图案、利用旋转设计图案,正确掌握相关定义是解题关键.2、(1)3秒后平行于轴;(2)或.【分析】(1)设秒后平行于轴,先求出的长,再根据矩形的判定与性质可得,由此建立方程,解方程即可得;(2)分①点在点右侧,②点在点左侧两种情况,分别根据建立方程,解方程即可得.【详解】解:(1),,设秒后平行于轴,,垂直于轴,垂直于轴,平行于轴,四边形是矩形,,即,解得,即3秒后平行于轴;(2)由题意得:经过秒后,,垂直于轴,点在直线上,且点的坐标为,点的纵坐标为4,①当点在点右侧时,,由得:,解得,,此时点的坐标为;②当点在点左侧时,,由得:,解得,,此时点的坐标为;综上,点的坐标为或.【点睛】本题考查了坐标与图形、矩形的判定与性质等知识点,较难的是题(2),正确分两种情况讨论是解题关键.3、(1)见解析;(2)39【分析】(1)首先根据CF⊥DE,DF=EF得出CF为DE的中垂线,然后根据垂直平分线的性质得到CD=CE,然后根据直角三角形斜边上的中线等于斜边的一半得到CD=AD,即可证明AD=CE;(2)由(1)得CD=CE=AB=5,由勾股定理求出BC,然后结合三角形的面积公式进行计算.【详解】(1)证明:∵DF=EF ∴点F为DE的中点 又∵CF⊥DE ∴CF为DE的中垂线∴CD=CE又∵在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线∴CD==AD∴AD=CE(2)解:由(1)得CD=CE==5 ∴AB=10 ∴在Rt△ABC中,BC==8∴EB=EC+BC=13∴ .【点睛】此题考查了垂直平分线的判定和性质,直角三角形性质,三角形面积公式等知识,解题的关键是熟练掌握垂直平分线的判定和性质,直角三角形性质,三角形面积公式.4、(1)54°;(2)见解析.【分析】(1)根据多边形内角和度数可得每一个角的度数,然后再利用四边形DFBC内角和计算出∠CDF的度数;(2)连接AD、DB,然后证明△DEA≌△DCB可得AD=DB,再根据等腰三角形的性质可得AF=BF.【详解】解:(1)∵五边形ABCDE的内角都相等,∴∠C=∠B=∠EDC=180°×(5﹣2)÷3=108°,∵DF⊥AB,∴∠DFB=90°,∴∠CDF=360°﹣90°﹣108°﹣108°=54°,故答案为:54°.(2)连接AD、DB,在△AED和△BCD中,,∴△DEA≌△DCB(SAS),∴AD=DB,∵DF⊥AB,∴AF=BF.【点睛】本题主要考查了多边形内角和公式,全等三角形的性质与判定,等腰三角形的性质与判定,熟练掌握多边形内角和公式是解题的关键.5、规律为:多边形的边数减去2,就是多边形中的三角形的个数; 2条,3条,9条,条;条;(1)6;(2)105;(3)【分析】通过观察多边形边数与其分割的三角形个数,即可发现规律利用规律,多边形的边数一个顶点出发的对角线数,直接填写表格即可先求出所有顶点得到的对角线之和,最后除以2即可得到边形的对角线条数(1)根据题意,四边形一个顶点可以得到一条,四个点共4条,再去除一半,加上四个点单独连接的4条线段,即可得到答案.(2)根据规律可以发现:十五边形的每个点可以得到12条,15点有180条,去掉一半,加上15个点组成的十五边形的的15条边,即可得到答案.(3)通过上述两小题,即可以找到对应的规律,利用规律进行求解即可.【详解】由图可以直接发现:多边形的边数与其分割的三角形个数相差2,故规律为:多边形的边数减去2,就是多边形中的三角形的个数.利用上图规律,便可以知道从五边形的一个顶点出发,得到2条对角线;六边形的一个顶点出发,得到3条对角线;十二边形的一个顶点出发,得到9条对角线;边形的一个顶点出发,得到条对角线.边形的一个顶点可以得到条对角线,故个顶点共有,由于每条对角线重复连接了一次,故n边形共有条对角线(1)解:有四个点可以组成四边形,每个点可以得到1条对角线,四个点共4条,每条对角线重复连接了一次,对角线条数为2,四边形的边数为4,一共可以连接2+4=6条线段.(2)解:有15个点可以组成十五边形,每个点可以得到12条对角线,四个点共180条,每条对角线重复连接了一次,对角线条数为90,四边形的边数为15,一共可以连接90+15=105条线段.(3)解:由前面题的规律可知:有个点可以组成边形,每个点可以得到条对角线,四个点共条,每条对角线重复连接了一次,对角线条数为,四边形的边数为,一共可以连接条线段.【点睛】本题主要是考察了图形类的规律问题以及列代数式,根据题意,找到对角线与多边形的边数关系是解决本题的关键,另外,注意本题是问的点与点之间可连接的线段数,不要只算对角线的条数.
相关试卷
这是一份北京课改版八年级下册第十五章 四边形综合与测试习题,共23页。试卷主要包含了下列命题是真命题的是等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试同步测试题,共27页。试卷主要包含了下列命题是真命题的是,下列图案中,是中心对称图形的是等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十五章 四边形综合与测试练习题,共25页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。