初中数学北京课改版八年级下册第十五章 四边形综合与测试同步测试题
展开
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试同步测试题,共27页。试卷主要包含了下列命题是真命题的是,下列图案中,是中心对称图形的是等内容,欢迎下载使用。
京改版八年级数学下册第十五章四边形章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法中,不正确的是( )A.四个角都相等的四边形是矩形B.对角线互相平分且平分每一组对角的四边形是菱形C.正方形的对角线所在的直线是它的对称轴D.一组对边相等,另一组对边平行的四边形是平行四边形2、如图,以O为圆心,长为半径画弧别交于A、B两点,再分别以A、B为圆心,以长为半径画弧,两弧交于点C,分别连接、,则四边形一定是( )
A.梯形 B.菱形 C.矩形 D.正方形3、下列测量方案中,能确定四边形门框为矩形的是( )A.测量对角线是否互相平分 B.测量两组对边是否分别相等C.测量对角线是否相等 D.测量对角线交点到四个顶点的距离是否都相等4、下列图案中,是中心对称图形,但不是轴对称图形的是( )A. B.C. D.5、下列命题是真命题的是( )A.五边形的内角和是720° B.三角形的任意两边之和大于第三边C.内错角相等 D.对角线互相垂直的四边形是菱形6、下列图案中,是中心对称图形的是( )A. B. C. D.7、已知三角形三边长分别为7cm,8cm,9cm,作三条中位线组成一个新的三角形,同样方法作下去,一共做了五个新的三角形,则这五个新三角形的周长之和为( )A.46.5cm B.22.5cm C.23.25cm D.以上都不对8、四边形四条边长分别是a,b,c,d,其中a,b为对边,且满足,则这个四边形是( )A.任意四边形 B.平行四边形 C.对角线相等的四边形 D.对角线垂直的四边形9、在平面直角坐标系中,点关于原点对称的点的坐标是( )A. B. C. D.10、下列图形既是中心对称图形,又是轴对称图形的是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,以矩形的对角线为直径画圆,点、在该圆上,再以点为圆心,的长为半径画弧,交于点.若,.则图中影部分的面积和为 __(结果保留根号和.2、如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于点E、F,连接PB、PD,若AE=2,PF=9,则图中阴影面积为______;3、如图,矩形的对角线、相交于点,分别以点、为圆心,长为半径画弧,分别交、于点、.若,,则图中阴影部分的面积为_______.(结果保留)4、如图,在正方形ABCD中,AB=2,连接AC,以点C为圆心、AC长为半径画弧,点E在BC的延长线上,则阴影部分的面积为 _____. 5、如图,正方形ABCD的边长为做正方形,使A,B,C,D是正方形各边的中点;做正方形,使是正方形各边的中点……以此类推,则正方形的边长为__________.
三、解答题(5小题,每小题10分,共计50分)1、阅读探究小明遇到这样一个问题:在中,已知,,的长分别为,,,求的面积.小明是这样解决问题的:如图1所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点(即的3个顶点都在小正方形的顶点处),从而借助网格就能计算出的面积.他把这种解决问题的方法称为构图法,(1)图1中的面积为________.实践应用参考小明解决问题的方法,回答下列问题:(2)图2是一个的正方形网格(每个小正方形的边长为1).①利用构图法在答题卡的图2中画出三边长分别为,,的格点.②的面积为________(写出计算过程).拓展延伸(3)如图3,已知,以,为边向外作正方形和正方形,连接.若,,,则六边形的面积为________(在图4中构图并填空).2、(1)如图,在中,,,,求的度数.(2)已知一个正多边形的内角和比它的外角和的倍多,求这个正多边形每个外角的度数.3、如图,的对角线与相交于点O,过点B作BPAC,过点C作CPBD,与相交于点P.(1)试判断四边形的形状,并说明理由;(2)若将改为矩形,且,其他条件不变,求四边形的面积;(3)要得到矩形,应满足的条件是_________(填上一个即可).4、已知:如图,,,AD是BC上的高线,CE是AB边上的中线,于G.(1)若,求线段AC的长;(2)求证:.5、(教材呈现)如图是华师版八年级下册数学教材第117页的部分内容.结合图①,写出完整的证明过程(应用)如图②,直线EF分别交矩形ABCD的边AD,BC于点E,F,将矩形ABCD沿EF翻折,使点C的对称点与点A重合,点D的对称点为G,若AB=4,BC=5,则EF的长为 .(拓展)如图③,直线EF分别交平行四边形ABCD的边AD,BC于点E,F,将平行四边形ABCD沿EF翻折,使点C的对称点与点A重合,点D的对称点为G,若AB=,BC=6,∠C=45°,则五边形ABFEG的周长为 . -参考答案-一、单选题1、D【分析】根据矩形的判定,正方形的性质,菱形和平行四边形的判定对各选项分析判断后利用排除法求解.【详解】解:A、四个角都相等的四边形是矩形,说法正确;B、正方形的对角线所在的直线是它的对称轴,说法正确;C、对角线互相平分且平分每一组对角的四边形是菱形,说法正确;D、一组对边相等且平行的四边形是平行四边形,原说法错误;故选:D.【点睛】本题主要考查特殊平行四边形的判定与性质,熟练掌握特殊平行四边形相关的判定与性质是解答本题的关键.2、B【分析】根据题意得到,然后根据菱形的判定方法求解即可.【详解】解:由题意可得:,∴四边形是菱形.故选:B.【点睛】此题考查了菱形的判定,解题的关键是熟练掌握菱形的判定方法.菱形的判定定理:①四条边都相等四边形是菱形;②一组邻边相等的平行四边形是菱形;③对角线垂直的平行四边形是菱形.3、D【分析】由平行四边形的判定与性质、矩形的判定分别对各个选项进行判断即可.【详解】解:A、∵对角线互相平分的四边形是平行四边形,∴对角线互相平分且相等的四边形才是矩形,∴选项A不符合题意;B、∵两组对边分别相等是平行四边形,∴选项B不符合题意;C、∵对角线互相平分且相等的四边形才是矩形,∴对角线相等的四边形不是矩形,∴选项C不符合题意;D、∵对角线交点到四个顶点的距离都相等,∴对角线互相平分且相等,∵对角线互相平分且相等的四边形是矩形,∴选项D符合题意;故选:D.【点睛】本题考查了矩形的判定、平行四边形的判定与性质、解题的关键是熟记矩形的判定定理.4、C【分析】根据轴对称图形和中心对称图形的定义求解即可.【详解】解:A.既是轴对称图形,又是中心对称图形,本选项不符合题意;B.既是轴对称图形,又是中心对称图形,本选项不符合题意;C.是中心对称图形,但不是轴对称图形,本选项符合题意;D.既是轴对称图形,又是中心对称图形,本选项不符合题意;故选:C.【点睛】此题考查了轴对称图形和中心对称图形的定义,解题的关键是熟练掌握轴对称图形和中心对称图形的定义.轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.5、B【分析】利用多边形的内角和公式、三角形的三边关系、平行线的性质及菱形的判定分别判断后即可确定正确的选项.【详解】解:A、五边形的内角和为540°,故原命题错误,是假命题,不符合题意;B、三角形的任意两边之和大于第三边,正确,是真命题,符合题意;C、两直线平行,内错角相等,故原命题错误,是假命题,不符合题意;D、对角线互相垂直的平行四边形是菱形,故原命题错误,是假命题,不符合题意,故选:B.【点睛】本题考查了命题与定理的知识,解题的关键是了解多边形的内角和公式、三角形的三边关系、平行线的性质及菱形的判定等知识,难度不大.6、B【分析】由题意依据一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形对各选项分析判断即可.【详解】解:A、C、D都是轴对称图形,只有B选项是中心对称图形.故选:B.【点睛】本题考查中心对称图形的识别,注意掌握中心对称图形是要寻找对称中心,旋转180度后与原图重合.7、C【分析】如图所示,,,,DE,DF,EF分别是三角形ABC的中位线,GH,GI,HI分别是△DEF的中位线,则,,,即可得到△DEF的周长,由此即可求出其他四个新三角形的周长,最后求和即可.【详解】解:如图所示,,,,DE,DF,EF分别是三角形ABC的中位线,GH,GI,HI分别是△DEF的中位线,∴,,,∴△DEF的周长,同理可得:△GHI的周长,∴第三次作中位线得到的三角形周长为,∴第四次作中位线得到的三角形周长为∴第三次作中位线得到的三角形周长为∴这五个新三角形的周长之和为,故选C.【点睛】本题主要考查了三角形中位线定理,解题的关键在于能够熟练掌握三角形中位线定理.8、B【分析】根据完全平方公式分解因式得到a=b,c=d,利用边的位置关系得到该四边形的形状.【详解】解:,,,,∴a=b,c=d,∵四边形四条边长分别是a,b,c,d,其中a,b为对边,∴c、d是对边,∴该四边形是平行四边形,故选:B.【点睛】此题考查了完全平方公式分解因式,平行四边形的判定方法,熟练掌握完全平方公式分解因式是解题的关键.9、A【分析】关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数,根据原理直接作答即可.【详解】解:点关于原点对称的点的坐标是: 故选A【点睛】本题考查的是关于原点成中心对称的两个点的坐标规律,掌握“关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数”是解题的关键.10、D【分析】一个图形绕着某固定点旋转180度后能够与原来的图形重合,则称这个图形是中心对称图形,这个固定点叫做对称中心;如果一个图形沿着某条直线对折后,直线两旁的部分能够重合,则称这个图形是轴对称图形,这条直线叫做对称轴;根据这两个概念逐项判断即可.【详解】A、既不是中心对称图形,也不是轴对称图形,故不符合题意;B、是轴对称图形,但不是中心对称图形,故不符合题意;C、是中心对称图形,但不是轴对称图形,故不符合题意;D、既是中心对称图形,也是轴对称图形,故符合题意.【点睛】本题考查了中心对称图形与轴对称图形的识别,掌握它们的概念是关键.二、填空题1、【分析】设的中点为,连接,先求出,,则,,然后求出,最后根据求解即可.【详解】解:设的中点为,连接,,四边形ABCD是矩形,,∠ABC=90°,又∵∠CAB=30°,∴,∴,∴,,,,∴.故答案为:.【点睛】本题主要考查了矩形的性质,扇形面积公式,解题的关键在于能够根据题意得到.2、【分析】作PM⊥AD于M,交BC于N,根据矩形的性质可得S△PEB=S△PFD即可求解.【详解】解:作PM⊥AD于M,交BC于N.
则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,,∴,,∴S阴=9+9=18,故答案为:18.【点睛】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明.3、##【分析】由图可知,阴影部分的面积是扇形AEO和扇形CFO的面积之和.【详解】解:∵四边形是矩形,∴,,,∴,,∴图中阴影部分的面积为:.故答案为:.【点睛】本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.4、##【分析】求出的度数,利用计算即可.【详解】∵四边形ABCD是正方形,∴,∴,,∴,∴.故答案为:.【点睛】本题考查了正方形的性质和扇形面积公式,计算扇形面积时,应该先求出弧所在圆的半径以及弧所对的圆心角的度数.5、【分析】利用正方形ABCD的及勾股定理,求出的长,再根据勾股定理求出和的长,找出规律,即可得出正方形的边长.【详解】解:∵A,B,C,D是正方形各边的中点∴,∵正方形ABCD的边长为,即AB=,∴,解得:,∴==2,同理==2,
==4 …,
∴,
∴=,∴的边长为
故答案为:.【点睛】本题考查了正方形性质、勾股定理的应用,解此题的关键是能根据计算结果得出规律,本题具有一定的代表性,是一道比较好的题目.三、解答题1、(1);(2)①作图见详解;②8;(3)在网格中作图见详解;31.【分析】(1)根据网格可直接用割补法求解三角形的面积;(2)①利用勾股定理画出三边长分别为、、,然后依次连接即可;②根据①中图形,可直接利用割补法进行求解三角形的面积;(3)根据题意在网格中画出图形,然后在网格中作出,,进而可得,得出,进而利用割补法在网格中求解六边形的面积即可.【详解】解:(1)△ABC的面积为:,故答案为:;(2)①作图如下(答案不唯一): ②的面积为:,故答案为:8;(3)在网格中作出,, 在与中,,∴,∴,,六边形AQRDEF的面积=正方形PQAF的面积+正方形PRDE的面积+的面积,故答案为:31.【点睛】本题主要考查勾股定理、正方形的性质、割补法求解面积及二次根式的运算,熟练掌握勾股定理、正方形的性质、割补法求解面积及二次根式的运算是解题的关键.2、(1);(2)每一个外角的度数是【分析】(1)根据平行线的性质可得∠B的度数,再根据等腰三角形的性质可得∠A的度数;
(2)根据n边形的内角和等于外角和的3倍多180°,可得方程180(n-2)=360×3+180,再解方程即可.【详解】解:(1)∵,,,,;设这个多边形的边数为,根据题意得:,解得,即它的边数是,所以每一个外角的度数是.【点睛】本题考查了平行线的性质、等腰三角形的性质以及多边形内角和与外角和.解题的关键是掌握多边形内角和公式,明确外角和是360°.3、(1)平行四边形,理由见解析;(2)四边形的面积为24;(3)AB=BC或AC⊥BD等(答案不唯一)【分析】(1)利用平行四边形的判定:两组对边分别平行的四边形是平行四边形,即可证明.(2)利用矩形的性质,得到对角线互相平分,进而证明四边形是菱形,分别求出菱形的对角线长度,利用对角线乘积的一半,求解面积即可.(3)添加的条件只要可以证明即可得到矩形.【详解】解:(1)四边形BPCO是平行四边形,
∵BP∥AC,CP∥BD,∴四边形BPCO是平行四边形. (2)连接OP. ∵四边形ABCD是矩形,∴OB=BD,OC=AC,AC=BD,∠ABC=90°,∴OB=OC. 又四边形BPCO是平行四边形,∴□BPCO是菱形.
∴OP⊥BC.又∵AB⊥BC,∴OP∥AB.又∵AC∥BP,四边形是平行四边形,∴OP=AB=6. ∴S菱形BPCO=. (3)AB=BC或AC⊥BD等(答案不唯一).当AB=BC时,为菱形,此时有:,利用含有的平行四边形为矩形,即可得到矩形,当AC⊥BD时,利用含有的平行四边形为矩形,即可得到矩形.【点睛】本题主要是考查了平行四边形、矩形和菱形的判定和性质,熟练掌握特殊四边形的判定和性质,是求解该类问题的关键.4、(1);(2)见解析【分析】(1)根据30°角所对直角边等于斜边的一半,得到AD=3,根据等腰直角三角形,得到CD=AD=3,根据勾股定理,得到AC的长即可;(2)根据斜边上的中线等于斜边的一半,得到DE=DC,根据等腰三角形三线合一性质,证明即可.【详解】(1),;(2)连接DE,,,,,,.【点睛】本题考查了30°角的性质,等腰直角三角形的性质,斜边上中线的性质,等腰三角形三线合一性质,熟练掌握性质是解题的关键.5、【教材呈现】见解析;【应用】 ;【拓展】【分析】(教材呈现)由“ASA”可证△AOE≌△COF,可得OE=OF,由对角线互相平分的四边形是平行四边形可证四边形AFCE是平行四边形,即可证平行四边形AFCE是菱形;(应用)过点F作FH⊥AD于H,由折叠的性质可得AF=CF,∠AFE=∠EFC,由勾股定理可求BF、EF的长,(拓展)过点A作AN⊥BC,交CB的延长线于N,过点F作FM⊥AD于M,由等腰直角三角形的性质可求AN=BN=3,由勾股定理可求AE=AF,再利用勾股定理可求EF的长,再求出五边形ABFEG的周长.【详解】解:(教材呈现)∵四边形ABCD是矩形,∴AECF,∴∠EAO=∠FCO,∵EF垂直平分AC,∴AO=CO,∠AOE=∠COF=90°,∴△AOE≌△COF(ASA)∴OE=OF,又∵AO=CO,∴四边形AFCE是平行四边形,∵EF⊥AC,∴平行四边形AFCE是菱形;(应用)如图,连接AC、EC由(教材呈现)可得平行四边形AFCE是菱形,∴AF=CF,∠AFE=∠EFC,∵AF2=BF2+AB2,∴(5−BF)2=BF2+16,∴BF=,∴AF=CF=,∵AB⊥BC,∴△ABC是直角三角形∴AC=∵S四边形AFCE=,∴∴EF=,故答案为:.(拓展)如图,过点A作AN⊥BC,交CB的延长线于N,过点F作FM⊥AD于M,∵四边形ABCD是平行四边形,∠C=45°,∴∠ABC=135°,∴∠ABN=45°,∵AN⊥BC,∴∠ABN=∠BAN=45°,∴△ANB是等腰直角三角形∵AN2+BN2=AB2,AN=BN∴AN=BN=3,NC=6+3=9∵将▱ABCD沿EF翻折,使点C的对称点与点A重合,∴AF=CF,∠AFE=∠EFC,∵ADBC,∴∠AEF=∠EFC=∠AFE,∴AE=AF,∵AF2=AN2+NF2,∴AF2=9+(9−AF)2,∴AF=5,∴AE=AF=5,∵ANMF,ADBC,∴四边形ANFM是平行四边形,∵AN⊥BC,∴四边形ANFM是矩形,∴AN=MF=3,∴AM==4,∴ME=AE−AM=1,∴EF==,∵BF=NF-BN=9-AF-BN=1,DE=GE=AD-AE=1∴五边形ABFEG的周长为AB+BF+EF+GE+AG=AB+BF+EF+CD+DE=+1+++1=故答案为:.【点睛】本题是四边形综合题,考查了平行四边形的性质,菱形的性质,折叠的性质,全等三角形的判定和性质,勾股定理等知识,添加恰当辅助线构造直角三角形是本题的关键.
相关试卷
这是一份北京课改版八年级下册第十五章 四边形综合与测试当堂达标检测题,共26页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。
这是一份2021学年第十五章 四边形综合与测试巩固练习,共21页。
这是一份初中北京课改版第十五章 四边形综合与测试课后作业题,共26页。