年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新强化训练京改版八年级数学下册第十五章四边形专项训练试卷(无超纲)

    2022年最新强化训练京改版八年级数学下册第十五章四边形专项训练试卷(无超纲)第1页
    2022年最新强化训练京改版八年级数学下册第十五章四边形专项训练试卷(无超纲)第2页
    2022年最新强化训练京改版八年级数学下册第十五章四边形专项训练试卷(无超纲)第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北京课改版八年级下册第十五章 四边形综合与测试课时练习

    展开

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课时练习,共21页。试卷主要包含了如图,M等内容,欢迎下载使用。
    京改版八年级数学下册第十五章四边形专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,四边形ABCD是平行四边形,下列结论中错误的是(    A.当▱ABCD是矩形时,∠ABC=90° B.当▱ABCD是菱形时,ACBDC.当▱ABCD是正方形时,ACBD D.当▱ABCD是菱形时,ABAC2、如图,在平面直角坐标系中,点Ax轴正半轴上的一个动点,点Cy轴正半轴上的点,于点C.已知.点B到原点的最大距离为(    A.22 B.18 C.14 D.103、如图,点E是△ABC内一点,∠AEB=90°,D是边AB的中点,延长线段DE交边BC于点F,点F是边BC的中点.若AB=6,EF=1,则线段AC的长为(  )A.7 B. C.8 D.94、如图,MN分别是正五边形ABCDE的边BCCD上的点,且BM=CNAMBN于点P,则∠APN的度数是(   A.120° B.118° C.110° D.108°5、下列图形中,既是轴对称图形,又是中心对称图形的是(    A. B.C. D.6、下列图形中,既是轴对称图形又是中心对称图形的是(    ).A. B.C. D.7、如图,四边形ABCD为平行四边形,延长ADE,使DE=AD,连接EBECDB,添加一个条件,不能使四边形DBCE成为矩形的是(  )A.AB=BE B.DEDC C.∠ADB=90° D.CEDE8、如图,将矩形纸片ABCD沿BD折叠,得到△BCDCDAB交于点E,若∠1=40°,则∠2的度数为(  )A.25° B.20° C.15° D.10°9、古典园林中的窗户是中国传统建筑装饰的重要组成部分,一窗一姿容,一窗一景致.下列窗户图案中,是中心对称图形的是(    A. B.C.  D.10、如图,小明从点A出发沿直线前进10m到达点B,向左转,后又沿直线前进10m到达点C,再向左转30°后沿直线前进10m到达点...照这样走下去,小明第一次回到出发点A,一共走了(    )米.A.80 B.100 C.120 D.140第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、若一个多边形的一条对角线把它分成两个四边形,则这个多边形的内角和是_____度.2、在平面直角坐标系中,点P(-3,7)关于原点对称的点的坐标是______.3、若正边形的每个内角都等于120°,则这个正边形的边数为________.4、点DE分别是△ABCABAC的中点,已知BC=12,则DE=_____5、若一个多边形的内角和是外角和的倍,则它的边数是_______.三、解答题(5小题,每小题10分,共计50分)1、如图,在中,对角线ACBD交于点OAB=10,AD=8,ACBC,求(1)的面积;(2)△AOD的周长.
     2、如图所示,在边长为1的菱形ABCD中,∠DAB=60°,MAD上不同于AD两点的一动点,NCD上一动点,且AM+CN=1.(1)证明:无论MN怎样移动,△BMN总是等边三角形;(2)求△BMN面积的最小值.3、如图,在平行四边形ABCD中,EBC的中点,连接AE并延长交DC的延长线于点F,连接BFAC,且ADAF(1)判断四边形ABFC的形状并证明;(2)若AB=3,∠ABC=60°,求EF的长.4、如图,▱ABCD的对角线ACBD相交于点O,点E,点F在线段BD上,且DEBF.求证:AECF5、如图,四边形ABCD是菱形,DEABDFBC,垂足分别为EF.求证:BEBF -参考答案-一、单选题1、D【分析】由矩形的四个角是直角可判断A,由菱形的对角线互相垂直可判断B,由正方形的对角线相等可判断C,由菱形的四条边相等可判断D,从而可得答案.【详解】解:当▱ABCD是矩形时,∠ABC=90°,正确,故A不符合题意;当▱ABCD是菱形时,ACBD,正确,故B不符合题意;当▱ABCD是正方形时,ACBD,正确,故C不符合题意;当▱ABCD是菱形时,ABBC,故D符合题意;故选D【点睛】本题考查的是矩形,菱形,正方形的性质,熟练的记忆矩形,菱形,正方形的性质是解本题的关键.2、B【分析】首先取AC的中点E,连接BEOEOB,可求得OEBE的长,然后由三角形三边关系,求得点B到原点的最大距离.【详解】解:取AC的中点E,连接BEOEOB∵∠AOC=90°,AC=16,OECEAC=8,BCACBC=6,BE10,若点OEB不在一条直线上,则OBOE+BE=18.若点OEB在一条直线上,则OBOE+BE=18,∴当OEB三点在一条直线上时,OB取得最大值,最大值为18.故选:B【点睛】此题考查了直角三角形斜边上的中线的性质以及三角形三边关系.此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.3、C【分析】根据直角三角形的性质求出DE,由EF=1,得到DF,再根据三角形中位线定理即可求出线段AC的长.【详解】解:∵∠AEB=90D是边AB的中点,AB=6,DEAB=3,EF=1,DFDE+EF=3+1=4.D是边AB的中点,点F是边BC的中点,DFABC的中位线,AC=2DF=8.故选:C【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,三角形中位线定理,求出DF的长是解题的关键.4、D【分析】由五边形的性质得出AB=BC,∠ABM=∠C,证明△ABM≌△BCN,得出∠BAM=∠CBN,由∠BAM+∠ABP=∠APN,即可得出∠APN=∠ABC,即可得出结果.【详解】解:∵五边形ABCDE为正五边形,
    AB=BC,∠ABM=∠C
    在△ABM和△BCN

    ∴△ABM≌△BCNSAS),
    ∴∠BAM=∠CBN
    ∵∠BAM+∠ABP=∠APN
    ∴∠CBN+∠ABP=∠APN=∠ABC=
    ∴∠APN的度数为108°;
    故选:D.【点睛】本题考查了全等三角形的判定与性质、多边形的内角和定理;熟练掌握五边形的形状,证明三角形全等是解决问题的关键.5、B【详解】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、不是轴对称图形,是中心对称图形,故本选项不符合题意;D、不是轴对称图形,是中心对称图形,故本选项不符合题意;故选:B.【点睛】本题考查了轴对称图形和中心对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键.6、C【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;B.既不是轴对称图形,又不是中心对称图形,故本选项不符合题意;C.既是轴对称图形,又是中心对称图形,故本选项符合题意;D.是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.7、B【分析】先证明四边形BCED为平行四边形,再根据矩形的判定进行解答.【详解】解:∵四边形ABCD为平行四边形,ADBC,且AD=BC又∵AD=DEDEBC,且DE=BC∴四边形BCED为平行四边形,A、∵AB=BEDE=ADBDAE□DBCE为矩形,故本选项不符合题意;B、∵DEDC∴∠EDB=90°+∠CDB>90°,∴四边形DBCE不能为矩形,故本选项符合题意;C、∵∠ADB=90°,∴∠EDB=90°,□DBCE为矩形,故本选项不符合题意;D、∵CEDE∴∠CED=90°,□DBCE为矩形,故本选项不符合题意.故选:B【点睛】本题考查了平行四边形的判定和性质、矩形的判定等知识,判定四边形BCED为平行四边形是解题的关键.8、D【分析】根据矩形的性质,可得∠ABD=40°,∠DBC=50°,根据折叠可得∠DBC′=∠DBC=50°,最后根据∠2=∠DB C′−∠DBA进行计算即可.【详解】解:∵四边形ABCD是矩形,∴∠ABC=90°,CDAB
    ∴∠ABD=∠1=40°,∴∠DBC=∠ABC-∠ABD=50°,
    由折叠可得∠DB C′=∠DBC=50°,
    ∴∠2=∠DB C′−∠DBA=50°−40°=10°,
    故选D.【点睛】本题考查了长方形性质,平行线性质,折叠性质,角的有关计算的应用,关键是求出∠DBC′和∠DBA的度数.9、C【分析】根据中心对称图形的定义进行逐一判断即可.【详解】解:A、不是中心对称图形,故此选项不符合题意;B、不是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项符合题意;D、不是中心对称图形,故此选项不符合题意;故选C.【点睛】本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.10、C【分析】由小明第一次回到出发点A,则小明走过的路程刚好是一个多边形的周长,由多边形的外角和为,每次的转向的角度的大小刚好是多边形的一个外角,则先求解多边形的边数,从而可得答案.【详解】解:由 可得:小明第一次回到出发点A一个要走米,故选C【点睛】本题考查的是多边形的外角和的应用,掌握“由多边形的外角和为得到一共要走12个10米”是解本题的关键.二、填空题1、720【分析】根据一个多边形被一条对角线分成两个四边形,可得多边形的边数,根据多边形的内角和定理,可得答案.【详解】解:由题意,得两个四边形有一条公共边,得多边形是由多边形内角和定理,得故答案为:720.【点睛】本题考查了多边形的对角线,利用了多边形内角和定理,解题的关键是注意对角线是两个四边形的公共边.2、 (3,-7)【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:在平面直角坐标系中,点P(-3,7)关于原点对称的点的坐标是(3,-7),故答案为:(3,-7).【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.3、6【分析】多边形的内角和可以表示成,因为所给多边形的每个内角均相等,故又可表示成,列方程可求解.【详解】解:设所求正边形边数为解得故答案是:6.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解题的关键是要会根据公式进行正确运算、变形和数据处理.4、6【分析】根据三角形的中位线等于第三边的一半进行计算即可.【详解】解:∵DE分别是△ABCABAC的中点,DE是△ABC的中位线,BC=12,DE=BC=6,故答案为6.【点睛】本题主要考查了三角形中位线定理,熟知三角形中位线定理是解题的关键.5、【分析】根据多边形的内角和公式(n−2)•180°以及外角和定理列出方程,然后求解即可.【详解】解:设这个多边形的边数是n
    根据题意得,(n−2)•180°=2×360°,
    解得n=6.
    答:这个多边形的边数是6.
    故答案为:6.【点睛】本题考查了多边形的内角和公式与外角和定理,需要注意,多边形的外角和与边数无关,任何多边形的外角和都是360°.三、解答题1、(1)48(2)【分析】(1)利用勾股定理先求出高AC,故可求解面积;(2)根据平行四边形的性质求出AO,再利用勾股定理求出OB的长,故可求解.【详解】解:(1)∵四边形ABCD是平行四边形,且AD=8
     BC=AD=8ACBC∴∠ACB=90°RtABC中,由勾股定理得AC2=AB2-BC2(2)∵四边形ABCD是平行四边形,且AC=6∵∠ACB=90°,BC=8【点睛】此题主要考查平行四边形的性质,解题的关键是熟知平行四边形的性质及勾股定理的应用.2、(1)见解析;(2)△BMN面积的最小值为【分析】(1)连接BD,证明△AMB≌△DNB,则可得BM=BN,∠MBA=∠NBD,由菱形的性质易得∠MBN=60゜,从而可证得结论成立;(2)过点BBEMN于点E【详解】(1)证明:如图所示,连接BD在菱形ABCD中,∠DAB=60°,∴∠ADB=∠NDB=60°,故△ADB是等边三角形,ABBDAM+CN=1,DN+CN=1,AMDN在△AMB和△DNB中,∴△AMB≌△DNBSAS),BMBN,∠MBA=∠NBD又∠MBA+∠DBM=60°,∴∠NBD+∠DBM=60°,即∠MBN=60°,∴△BMN是等边三角形;(2)过点BBEMN于点EBMBNMNx∴当BMAD时,x最小,此时,∴△BMN面积的最小值为【点睛】本题考查了菱形的性质,等边三角形的判定与性质,垂线段最短,全等三角形的判定与性质等知识,关键是作辅助线证三角形全等.3、(1)矩形,见解析;(2)3【分析】(1)利用AAS判定△ABE≌△FCE,从而得到ABCF;由已知可得四边形ABFC是平行四边形,BCAF,根据对角线相等的平行四边形是矩形,可得到四边形ABFC是矩形;(2)先证△ABE是等边三角形,可得ABAEEF=3.【详解】解:(1)四边形ABFC是矩形,理由如下:∵四边形ABCD是平行四边形,∴∠BAE=∠CFE,∠ABE=∠FCEEBC的中点,EBEC在△ABE和△FCE中,∴△ABE≌△FCEAAS),ABCF∴四边形ABFC是平行四边形,ADBCADAFBCAF∴四边形ABFC是矩形.(2)∵四边形ABFC是矩形,BCAFAEEFBECEAEBE∵∠ABC=60°,∴△ABE是等边三角形,ABAE=3,EF=3.【点睛】本题考查了平行四边形的性质与判定,矩形的判定,三角形全等的性质与判定,等边三角形的性质与判定,掌握以上性质定理是解题的关键.4、见解析【分析】首先根据平行四边形的性质推出ADCBADBC,得到∠ADE=∠CBF,从而证明△ADE≌△CBF,得到∠AED=∠CFB,即可证明结论.【详解】证:∵四边形ABCD是平行四边形,ADCBADBC∴∠ADE=∠CBF在△ADE和△CBF中,∴△ADE≌△CBFSAS),∴∠AED=∠CFBAECF【点睛】本题考查平行四边形的性质,以及全等三角形的判定与性质等,掌握平行四边形的基本性质,准确证明全等三角形并利用其性质是解题关键.5、见解析【分析】根据菱形的性质,可得ADDCABBC,∠A=∠C.从而得到△AED≌△CFD.从而得到AECF.即可求证.【详解】证明:∵四边形ABCD是菱形, ADDCABBC,∠A=∠CDEABDFBC∴∠AED=∠CFD=90°.∴△AED≌△CFDAAS).AECFABAEBCCF即:BEBF【点睛】本题主要考查了菱形的性质,全等三角形的判定和性质,熟练掌握菱形的对角相等,对边相等是解题的关键. 

    相关试卷

    2021学年第十五章 四边形综合与测试随堂练习题:

    这是一份2021学年第十五章 四边形综合与测试随堂练习题,共25页。

    初中数学北京课改版八年级下册第十五章 四边形综合与测试精练:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试精练,共25页。试卷主要包含了下列∠A等内容,欢迎下载使用。

    北京课改版第十五章 四边形综合与测试达标测试:

    这是一份北京课改版第十五章 四边形综合与测试达标测试,共37页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map