年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年最新京改版八年级数学下册第十五章四边形定向练习练习题(无超纲)

    2021-2022学年最新京改版八年级数学下册第十五章四边形定向练习练习题(无超纲)第1页
    2021-2022学年最新京改版八年级数学下册第十五章四边形定向练习练习题(无超纲)第2页
    2021-2022学年最新京改版八年级数学下册第十五章四边形定向练习练习题(无超纲)第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北京课改版八年级下册第十五章 四边形综合与测试随堂练习题

    展开

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试随堂练习题,共27页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。
    京改版八年级数学下册第十五章四边形定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在正方形有中,EAB上的动点,(不与AB重合),连结DE,点A关于DE的对称点为F,连结EF并延长交BC于点G,连接DG,过点EDEDG的延长线于点H,连接,那么的值为( )A.1 B. C. D.22、一个多边形每个外角都等于36°,则这个多边形是几边形(     A.7 B.8 C.9 D.103、若一个直角三角形的周长为,斜边上的中线长为1,则此直角三角形的面积为(    A. B. C. D.4、下列图形中,既是中心对称图形又是轴对称图形的有几个(  )A.1个 B.2个 C.3个 D.4个5、下列图形中,是中心对称图形的是(    A. B. C. D.6、如图,矩形ABCD的对角线ACBD相交于点O,若∠AOD=120°,AC=16,则AB的长为(  )A.16 B.12 C.8 D.47、下列长度的三条线段与长度为4的线段首尾依次相连能组成四边形的是(    ).A.1,1,2, B.1,1,1 C.1,2,2 D.1,1,68、如图,在矩形ABCD中,点EBC的中点,连接AE,点FAE的中点,连接DF,若AB=9,AD,则四边形CDFE的面积是(  )A. B. C. D.549、下列图形中,既是轴对称图形又是中心对称图形的是(  )A. B. C. D.10、如图,菱形OABC在平面直角坐标系中的位置如图所示,∠AOC=45°,OA,则点C的坐标为(  )A.(,1) B.(1,1) C.(1, D.(+1,1)第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、若正边形的每个内角都等于120°,则这个正边形的边数为________.2、若点Pm,﹣2)与Q(﹣4,2)关于原点对称,则m=_____.3、如图,圆柱形容器高为0.8m,底面周长为4.8m,在容器内壁离底部0.1m的点处有一只蚊子,此时一只壁虎正好在容器的顶部点处,若容器壁厚忽略不计,则壁虎捕捉蚊子的最短路程是______m.
     4、如图,在平行四边形ABCD中,AB=4,BC=5,以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点PQ为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CNBA的延长线于点E,则AE的长是 _____.5、如图,在中,上的两个动点,且,则的最小值是________.三、解答题(5小题,每小题10分,共计50分)1、△ABC为等边三角形,AB=4,ADBC于点DE为线段AD上一点,AE.以AE为边在直线AD右侧构造等边△AEF.连结CENCE的中点.(1)如图1,EFAC交于点G①连结NG,求线段NG的长;②连结ND,求∠DNG的大小.(2)如图2,将△AEF绕点A逆时针旋转,旋转角为α.M为线段EF的中点.连结DNMN.当30°<α<120°时,猜想∠DNM的大小是否为定值,并证明你的结论.2、(3)点PAC上一动点,则PE+PF最小值为.3、(1)先化简,再求值:(a+b)(ab)﹣aa﹣2b),其中a=1,b=2;(2)如图,菱形ABCD中,ABACEF分别是BCAD的中点,连接AECF.证明:四边形AECF是矩形.4、如图,将▱ABCD的边AB延长到点E,使BEAB,连接DE,交边BC于点F(1)求证:△BEF≌△CDF(2)连接BDCE,若∠BFD=2∠A,求证四边形BECD是矩形.5、如图,四边形ABCD是平行四边形,延长DABC,使得AECF,连接BEDF(1)求证:△ABE≌△CDF(2)连接BD,若∠1=32°,∠ADB=22°,请直接写出当∠ABE     °时,四边形BFDE是菱形. -参考答案-一、单选题1、B【分析】作辅助线,构建全等三角形,证明△DAE≌△ENH,得AE=HNAD=EN,再说明△BNH是等腰直角三角形,可得结论.【详解】解:如图,在线段AD上截取AM,使AM=AE  AD=ABDM=BE∵点A关于直线DE的对称点为F∴△ADE≌△FDEDA=DF=DC,∠DFE=∠A=90°,∠1=∠2,∴∠DFG=90°,RtDFGRtDCG中,RtDFGRtDCGHL),∴∠3=∠4,∵∠ADC=90°,∴∠1+∠2+∠3+∠4=90°,∴2∠2+2∠3=90°,∴∠2+∠3=45°,即∠EDG=45°,EHDE∴∠DEH=90°,△DEH是等腰直角三角形,∴∠AED+∠BEH=∠AED+∠1=90°,DE=EH∴∠1=∠BEH在△DME和△EBH中,∴△DME≌△EBHSAS),EM=BHRtAEM中,∠A=90°,AM=AE ,即=故选:B.【点睛】本题考查了正方形的性质,全等三角形的判定定理和性质定理,等知识,解决本题的关键是作出辅助线,利用正方形的性质得到相等的边和相等的角,证明三角形全等.2、D【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【详解】解:∵360°÷36°=10,∴这个多边形的边数是10.故选D.【点睛】本题考查了多边形内角与外角,外角和的大小与多边形的边数无关,熟练掌握多边形内角与外角是解题关键.3、B【分析】根据直角三角形斜边上中线的性质,可得斜边为2,然后利用两直角边之间的关系以及勾股定理求出两直角边之积,从而确定面积.【详解】解:根据直角三角形斜边上中线的性质可知,斜边上的中线等于斜边的一半,得AC=2BD=2.∵一个直角三角形的周长为3+AB+BC=3+-2=1+等式两边平方得(AB+BC2= (1+) 2AB2+BC2+2ABBC=4+2AB2+BC2=AC2=4,∴2ABBC=2ABBC=即三角形的面积为×ABBC=故选:B.【点睛】本题考查直角三角形斜边上的中线,勾股定理,三角形的面积等知识点的理解和掌握,巧妙求出ACBC的值是解此题的关键,值得学习应用.4、A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:第一个图形既不是轴对称图形,也不是中心对称图形,不符合题意;第二个图形是轴对称图形,不是中心对称图形,不符合题意;第三个图形是轴对称图形,不是中心对称图形,不符合题意;第四个图形既是轴对称图形,也是中心对称图形,符合题意;既是中心对称图形又是轴对称图形的只有1个,故选:A.【点睛】本题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5、B【分析】根据中心对称图形的定义求解即可.【详解】解:A、不是中心对称图形,不符合题意;B、是中心对称图形,符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意.故选:B.【点睛】此题考查了中心对称图形,解题的关键是熟练掌握中心对称图形的定义.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.6、C【分析】由题意可得AOBOCODO=8,可证△ABO是等边三角形,可得AB=8.【详解】解:∵四边形ABCD是矩形,AC=2AO=2COBD=2BO=2DOACBD=16,OAOB=8,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,ABAOBO=8,故选:C.【点睛】本题考查了矩形的性质,等边三角形的性质和判定,熟练掌握矩形的性质是本题的关键.7、C【分析】将每个选项中的四条线段进行比较,任意三条线段的和都需大于另一条线段的长度,由此可组成四边形,据此解答.【详解】解:A、因为1+1+2=4,所以不能构成四边形,故该项不符合题意;B、因为1+1+1<4,所以不能构成四边形,故该项不符合题意;C、因为1+2+2>4,所以能构成四边形,故该项符合题意;D、因为1+1+4=6,所以不能构成四边形,故该项不符合题意;故选:C.【点睛】此题考查了多边形的构成特点:任意几条边的和大于另一条边长,正确理解多边形的构成特点是解题的关键.8、C【分析】过点F分别交于MN,由FAE中点得,根据,计算即可得出答案.【详解】如图,过点F分别交于MN∵四边形ABCD是矩形,∵点EBC的中点,FAE中点,故选:C.【点睛】本题考查矩形的性质与三角形的面积公式,掌握是解题的关键.9、D【详解】解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;
     B.不是轴对称图形,是中心对称图形,故本选项不符合题意;
    C.是轴对称图形,不是中心对称图形,故本选项符合题意;
    D.既是轴对称图形,又是中心对称图形,故本选项不符合题意.
    故选:D.【点睛】本题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.10、B【分析】CDx轴,根据菱形的性质得到OC=OA=,在RtOCD中,根据勾股定理求出OD的值,即可得到C点的坐标.【详解】:作CDx轴于点D则∠CDO=90°,∵四边形OABC是菱形,OA=OC=OA=又∵∠AOC=45°,∴∠OCD=90°-∠AOC=90°-45°=45°,∴∠DOC=∠OCDCD=ODRtOCD中,OC=CD2+OD2=OC2∴2OD2=OC2=2,OD2=1,OD=CD=1(负值舍去),则点C的坐标为(1,1),故选:B【点睛】此题考查了菱形的性质、等腰直角三角形的性质以及勾股定理,根据勾股定理和等腰直角三角形的性质求出OD=CD=1是解决问题的关键.二、填空题1、6【分析】多边形的内角和可以表示成,因为所给多边形的每个内角均相等,故又可表示成,列方程可求解.【详解】解:设所求正边形边数为解得故答案是:6.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解题的关键是要会根据公式进行正确运算、变形和数据处理.2、4【分析】两个点关于原点对称时,它们的坐标符号相反,即点Pxy)关于原点O的对称点是P1(-x,-y).【详解】解:因为点Pm,﹣2)与Q(﹣4,2)关于原点对称,所以m-4=0,m=4,故答案为:4.【点睛】本题考查平面内两点关于原点对称的点,属于基础题,掌握相关知识是解题关键.3、2.5.【分析】如图所示,将容器侧面展开,连接AB,则AB的长即为最短距离,然后分别求出ACBC的长度,利用勾股定理求解即可.【详解】解:如图所示,将容器侧面展开,连接AB,则AB的长即为最短距离,∵圆柱形容器高为0.8m,底面周长为4.8m在容器内壁离底部0.1m的点B处有一只蚊子,此时一只壁虎正好在容器的顶部点A处,过点BBCADC∴∠BCD =90°,∵四边形ADEF是矩形,∴∠ADE=∠DEF=90°∴四边形BCDE是矩形,答:则壁虎捕捉蚊子的最短路程是2.5m.故答案为:2.5.
    【点睛】本题主要考查了平面展开—最短路径,解题的关键在于能够根据题意确定展开图中AB的长即为所求.4、1【分析】根据基本作图,得到EC是∠BCD的平分线,由ABCD,得到∠BEC=∠ECD=∠ECB,从而得到BE=BC,利用线段差计算即可.【详解】根据基本作图,得到EC是∠BCD的平分线,∴∠ECD=∠ECB∵四边形ABCD是平行四边形,ABCD∴∠BEC=∠ECD∴∠BEC=∠ECBBE=BC=5,AE= BE-AB=5-4=1,故答案为:1.【点睛】本题考查了角的平分线的尺规作图,等腰三角形的判定,平行线的性质,平行四边形的性质,熟练掌握尺规作图,灵活运用等腰三角形的判定定理是解题的关键.5、【分析】过点AAD//BC,且ADMN,连接MD,则四边形ADMN是平行四边形,作点A关于BC的对称点A′,连接AA′交BC于点O,连接AM,三点DMA′共线时,最小为AD的长,利用勾股定理求AD的长度即可解决问题.【详解】解:过点AAD//BC,且ADMN,连接MD则四边形ADMN是平行四边形,
    MDANADMN
    作点A关于BC的对称点A′,连接A A′交BC于点O,连接AM
    AMAM
    AMANAMDM
    ∴三点DMA′共线时,AMDM最小为AD的长,
    AD//BCAOBC
    ∴∠DA=90°,
    ,,
    ∴BC=BOCOAO
    在Rt△AD中,由勾股定理得:
    D
    的最小是值为:故答案为:【点睛】本题主要考查了等腰三角形的性质,平行四边形的判定与性质,勾股定理等知识,构造平行四边形将AN转化为DM是解题的关键.三、解答题1、(1)①;②;(2)的大小是定值,证明见解析.【分析】(1)①先根据等边三角形的性质、勾股定理可得,从而可得,再利用勾股定理可得,然后根据等边三角形的性质可得,最后根据直角三角形斜边上的中线等于斜边的一半即可得;②先根据直角三角形斜边上的中线等于斜边的一半可得,再根据等腰三角形的性质可得,从而可得,然后根据四边形的内角和即可得;(2)连接,先证出,根据全等三角形的性质可得,从而可得,再根据三角形中位线定理可得,然后根据三角形的外角性质、角的和差即可得出结论.【详解】解:(1)①∵是等边三角形,是等边三角形,,即又∵点的中点,②如图,连接由(1)①知,,点的中点,(2)的大小是定值,证明如下:如图,连接都是等边三角形,,即中,∵点的中点,点的中点,,即点的中点,的大小为定值.【点睛】本题考查了等边三角形的性质、直角三角形斜边上的中线等于斜边的一半、三角形中位线定理等知识点,较难的是题(2),通过作辅助线,构造全等三角形和利用到三角形中位线定理是解题关键.2、见解析【分析】(1)根据折叠的性质可得:∠1=∠2,再由矩形的性质,可得∠2=∠3,从而得到∠1=∠3,即可求解;(2)设FD=x,则AF=CF=8-x,再由勾股定理,可得DF=3,从而得到CF=5,即可求解;(3)连接PB,根据折叠的性质可得△ECP≌△BCP,从而得到PE=PB,进而得到当点FPB三点共线时,PE+PF最小,最小值为BF的长,再由勾股定理,即可求解.【详解】(1)解:△ACF是等腰三角形,理由如下:如图,由折叠可知,∠1=∠2,∵四边形ABCD是矩形,ABCD∴∠2=∠3,∴∠1=∠3,AF=CF∴△ACF是等腰三角形;(2)∵四边形ABCD是矩形且AB=8,BC=4,AD=BC=4,CD=AB=8,∠D=90°,FD=x,则AF=CF=8-xRtAFD中,根据勾股定理得AD2+DF2=AF2∴42+x2=(8-x2解得x=3  ,即DF=3,CF=8-3=5,(3)如图,连接PB根据折叠得:CE=CB,∠ECP=∠BCPCP=CP∴△ECP≌△BCPPE=PBPE+PF=PE+PB∴当点FPB三点共线时,PE+PF最小,最小值为BF的长,由(2)知:CF=5,BC=4,∠BCF=90°,PE+PF最小值为【点睛】本题主要考查了矩形与折叠问题,等腰三角形的判定,熟练掌握矩形和折叠的性质是解题的关键.3、(1),0;(2)证明见解析.【分析】(1)根据整式的乘法运算法则先去括号,然后合并同类项化简,然后代入求解即可;(2)首先根据菱形的性质得到,然后根据EF分别是BCAD的中点,得出,根据一组对边平行且相等证明出四边形AECF是平行四边形,然后根据等腰三角形三线合一的性质得出,即可证明出四边形AECF是矩形.【详解】(1)(a+b)(ab)﹣aa﹣2ba=1,b=2代入得:原式=(2)如图所示,∵四边形ABCD是菱形,,且又∵EF分别是BCAD的中点,∴四边形AECF是平行四边形,ABACEBC的中点,,即∴平行四边形AECF是矩形.【点睛】此题考查了整式的混合运算,代数式求值问题,菱形的性质和矩形的判定,解题的关键是熟练掌握整式的混合运算法则,菱形的性质和矩形的判定定理.4、(1)见解析;(2)见解析【分析】(1)根据平行四边形的性质可得ABCDAB=CD,进而证明∠BEF=∠FDC,∠FBE=∠FCD, ASA证明△BEF≌△CDF.(2)根据等边对等角证明FD=FC,进而证明,根据对角线相等的平行四边形是矩形即可证明【详解】(1)∵四边形ABCD为平行四边形,ABCDAB=CD.BE=AB,BECDBE=CD.∴∠BEF=∠FDC,∠FBE=∠FCD,∴△BEF≌△CDF.(2)∵BECDBE=CD.∴四边形BECD为平行四边形, DF=DE,CF=BC, ∵四边形ABCD为平行四边形,∴∠FCD=∠A,∵∠BFD=∠FCD+∠FDC,∠BFD=2∠A,∴∠FDC=∠FCD,FD=FC.DF=DE,CF=BC,BC=DE,∴▱BECD是矩形.【点睛】本题考查了平行四边形的性质与判定,矩形的判定,三角形全等的性质与判定,掌握平行四边形的性质与判定是解题的关键.5、(1)见解析;(2)12【分析】(1)由“SAS”可证△ABE≌△CDF
    (2)通过证明BE=DE,可得结论.【详解】证明:(1)∵四边形ABCD是平行四边形,
    AB=CD,∠BAD=∠BCD
    ∴∠1=∠DCF
    在△ABE和△CDF中,
    ∴△ABE≌△CDFSAS);
    (2)当∠ABE=10°时,四边形BFDE是菱形,
    理由如下:∵△ABE≌△CDF
    BE=DFAE=CF∵四边形ABCD是平行四边形,
    AD=BC
    AD+AE=BC+CF
    BF=DE
    ∴四边形BFDE是平行四边形,
    ∵∠1=32°,∠ADB=22°,
    ∴∠ABD=∠1-∠ADB=10°,
    ∵∠ABE=12°,
    ∴∠DBE=22°,
    ∴∠DBE=∠ADB=22°,
    BE=DE
    ∴平行四边形BFDE是菱形,
    故答案为:12.【点睛】本题考查了菱形的判定,平行四边形的判定和性质,全等三角形的判定和性质,掌握菱形的判定是解题的关键. 

    相关试卷

    数学八年级下册第十五章 四边形综合与测试达标测试:

    这是一份数学八年级下册第十五章 四边形综合与测试达标测试,共28页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。

    北京课改版八年级下册第十五章 四边形综合与测试同步练习题:

    这是一份北京课改版八年级下册第十五章 四边形综合与测试同步练习题,共27页。试卷主要包含了如图,M等内容,欢迎下载使用。

    数学八年级下册第十五章 四边形综合与测试练习题:

    这是一份数学八年级下册第十五章 四边形综合与测试练习题,共34页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map