年终活动
搜索
    上传资料 赚现金

    2021-2022学年最新京改版八年级数学下册第十五章四边形同步训练试题(无超纲)

    2021-2022学年最新京改版八年级数学下册第十五章四边形同步训练试题(无超纲)第1页
    2021-2022学年最新京改版八年级数学下册第十五章四边形同步训练试题(无超纲)第2页
    2021-2022学年最新京改版八年级数学下册第十五章四边形同步训练试题(无超纲)第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学八年级下册第十五章 四边形综合与测试练习题

    展开

    这是一份数学八年级下册第十五章 四边形综合与测试练习题,共23页。试卷主要包含了以下分别是回收等内容,欢迎下载使用。
    京改版八年级数学下册第十五章四边形同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下列测量方案中,能确定四边形门框为矩形的是(    A.测量对角线是否互相平分 B.测量两组对边是否分别相等C.测量对角线是否相等 D.测量对角线交点到四个顶点的距离是否都相等2、如图,把一张长方形纸片ABCD沿对角线AC折叠,点B的对应点为点B′,AB′与DC相交于点E,则下列结论正确的是 (   A.∠DAB′=∠CAB B.∠ACD=∠BCD C.ADAE D.AECE3、在平面直角坐标系中,点关于原点对称的点的坐标是(    A. B. C. D.4、下列图形中,可以看作是中心对称图形的是(     A. B. C. D.5、下列长度的三条线段与长度为4的线段首尾依次相连能组成四边形的是(    ).A.1,1,2, B.1,1,1 C.1,2,2 D.1,1,66、如图,已知在正方形ABCD中,厘米,,点E在边AB上,且厘米,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上以a厘米/秒的速度由C点向D点运动,设运动时间为t秒.若存在at的值,使全等时,则t的值为(   
    A.2 B.2或1.5 C.2.5 D.2.5或27、在□ABCD中,AC=24,BD=38,AB=m,则m的取值范围是(    A.24<m<39 B.14<m<62 C.7<m<31 D.7<m<128、下列图形中,不是中心对称图形的是(    A. B. C. D.9、以下分别是回收、节水、绿色包装、低碳4个标志,其中是中心对称图形的是(    ).A. B. C. D.10、四边形的内角和与外角和的数量关系,正确的是(  )A.内角和比外角和大180° B.外角和比内角和大180°C.内角和比外角和大360° D.内角和与外角和相等第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,矩形ABCD中,ACBD相交于点OAC=12,如果∠AOD=60°,则DC=__.2、坐标平面内的点P(m,﹣2020)与点Q(2021,n)关于原点对称,则mn=_________.3、如图,点ABC在⊙O上,四边形OABC是平行四边形,若对角线AC=2,则的长为 _____.4、如图,在矩形ABCD中,对角线ACBD相交于点O,点EF分别是AOAD的中点,若AB=6cm,BC=8cm,则EF=_____cm.5、如图是中国古代建筑中的一个正六边形的窗户,则它的内角和为 _____.三、解答题(5小题,每小题10分,共计50分)1、如图,把矩形纸片放入直角坐标系中,使分别落在x轴,y轴的正半轴上,连接,且(1)求所在直线的解析式;(2)将纸片折叠,使点A与点C重合(折痕为),求折叠后纸片重叠部分的面积;(3)若过一定点M的任意一条直线总能把矩形的面积分为相等的两部分,则点M的坐标为________.2、如图,在四边形ABCD中,∠ABC=∠ADC=90°,EAC的中点,连接BDEDEB.求证:∠1=∠2.3、在RtABC中,∠ACB=90°,ACBC,点DAB边上一点,过点DDEAB,交BC于点E,连接AE,取AE的中点P,连接DPCP(1)观察猜想:  如图(1),DPCP之间的数量关系是     DPCP之间的位置关系是     (2)类比探究: 将图(1)中的△BDE绕点B逆时针旋转45°,(1)中的结论是否仍然成立?若成立,请就图(2)的情形给出证明;若不成立,请说明理由.(3)问题解决: 若BC=3BD=3  将图(1)中的△BDE绕点B在平面内自由旋转,当BEAB时,请直接写出线段CP的长.4、如图,点E为矩形ABCD外一点,AE = DE.求证:△ABE≌△DCE5、如图,的中位线,延长,使,连接求证:
      -参考答案-一、单选题1、D【分析】由平行四边形的判定与性质、矩形的判定分别对各个选项进行判断即可.【详解】解:A、∵对角线互相平分的四边形是平行四边形,∴对角线互相平分且相等的四边形才是矩形,∴选项A不符合题意;B、∵两组对边分别相等是平行四边形,∴选项B不符合题意;C、∵对角线互相平分且相等的四边形才是矩形,∴对角线相等的四边形不是矩形,∴选项C不符合题意;D、∵对角线交点到四个顶点的距离都相等,∴对角线互相平分且相等,∵对角线互相平分且相等的四边形是矩形,∴选项D符合题意;故选:D.【点睛】本题考查了矩形的判定、平行四边形的判定与性质、解题的关键是熟记矩形的判定定理.2、D【分析】根据翻折变换的性质可得∠BAC=∠CAB′,根据两直线平行,内错角相等可得∠BAC=∠ACD,从而得到∠ACD=∠CAB′,然后根据等角对等边可得AE=CE,从而得解.【详解】解:∵矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,
    ∴∠BAC=∠CAB′,
    ABCD
    ∴∠BAC=∠ACD
    ∴∠ACD=∠CAB′,
    AE=CE
    ∴结论正确的是D选项.
    故选D.【点睛】本题考查了翻折变换的性质,平行线的性质,矩形的对边互相平行,等角对等边的性质,熟记各性质并准确识图是解题的关键.3、A【分析】关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数,根据原理直接作答即可.【详解】解:点关于原点对称的点的坐标是: 故选A【点睛】本题考查的是关于原点成中心对称的两个点的坐标规律,掌握“关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数”是解题的关键.4、A【分析】根据中心对称图形的概念(在平面内,把一个图形绕着某个点旋转,如果旋转后的图形能与原来的图形重合,则为中心对称图形)求解即可.【详解】解:B、C、D三个选项的图形旋转后,均不能与原来的图形重合,不符合题意,A选项是中心对称图形.故本选项正确.故选:A.【点睛】本题考查了中心对称图形的概念,深刻理解中心对称图形的概念是解题关键.5、C【分析】将每个选项中的四条线段进行比较,任意三条线段的和都需大于另一条线段的长度,由此可组成四边形,据此解答.【详解】解:A、因为1+1+2=4,所以不能构成四边形,故该项不符合题意;B、因为1+1+1<4,所以不能构成四边形,故该项不符合题意;C、因为1+2+2>4,所以能构成四边形,故该项符合题意;D、因为1+1+4=6,所以不能构成四边形,故该项不符合题意;故选:C.【点睛】此题考查了多边形的构成特点:任意几条边的和大于另一条边长,正确理解多边形的构成特点是解题的关键.6、D【分析】根据题意分两种情况讨论若△BPE≌△CQP,则BP=CQBE=CP;若△BPE≌△CPQ,则BP=CP=5厘米,BE=CQ=6厘米进行求解即可.【详解】解:当,即点Q的运动速度与点P的运动速度都是2厘米/秒,若△BPE≌△CQP,则BP=CQBE=CP
    AB=BC=10厘米,AE=4厘米,
    BE=CP=6厘米,
    BP=10-6=4厘米,
    ∴运动时间t=4÷2=2(秒);
    ,即点Q的运动速度与点P的运动速度不相等,
    BPCQ
    ∵∠B=∠C=90°,
    ∴要使△BPE与△OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可.
    ∴点PQ运动的时间t=(秒).综上t的值为2.5或2.
    故选:D.【点睛】本题主要考查正方形的性质以及全等三角形的判定,解决问题的关键是掌握正方形的四条边都相等,四个角都是直角;两边及其夹角分别对应相等的两个三角形全等.同时要注意分类思想的运用.7、C【分析】作出平行四边形,根据平行四边形的性质可得,然后在中,利用三角形三边的关系即可确定m的取值范围.【详解】解:如图所示:∵四边形ABCD为平行四边形,中,故选:C.【点睛】题目主要考查平行四边形的性质及三角形三边的关系,熟练掌握平行四边形的性质及三角形三边关系是解题关键.8、C【详解】解:选项A是中心对称图形,故A不符合题意;选项B是中心对称图形,故B不符合题意;选项C不是中心对称图形,故C符合题意;选项D是中心对称图形,故D不符合题意;故选C【点睛】本题考查的是中心对称图形的识别,掌握“中心对称图形的定义判断中心对称图形”是解本题的关键,中心对称图形的定义:把一个图形绕某点旋转后能够与自身重合,则这个图形是中心对称图形.9、C【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,即可判断出答案.【详解】解:A、此图形不是中心对称图形,故本选项不符合题意;
    B、此图形不是中心对称图形,故此选项不符合题意;
    C、此图形是中心对称图形,故此选项符合题意;
    D、此图形不是中心对称图形,故此选项不符合题意.
    故选:C.【点睛】此题主要考查了中心对称图形的定义,关键是找出图形的对称中心.10、D【分析】直接利用多边形内角和定理分别分析得出答案.【详解】解:A.四边形的内角和与外角和相等,都等于360°,故本选项表述错误;B.四边形的内角和与外角和相等,都等于360°,故本选项表述错误;C.六四边形的内角和与外角和相等,都等于360°,故本选项表述错误;D.四边形的内角和与外角和相等,都等于360°,故本选项表述正确.故选:D.【点睛】本题考查了四边形内角和和外角和,解题关键是熟记四边形内角和与外角和都是360°.二、填空题1、【分析】根据矩形的对角线互相平分且相等可得OAOD,然后判断出△AOD是等边三角形,再根据勾股定理解答即可.【详解】解:∵四边形ABCD是矩形,OAODAC×12=6,∠ADC=90°,∵∠AOD=60°,∴△AOD是等边三角形,ADOA=6,故答案为:【点睛】本题考查了矩形的性质和勾股定理以及等边三角形的判定,解题关键是根据矩形的性质得出△AOD是等边三角形.2、-1【分析】根据“关于原点对称的点,横坐标与纵坐标都互为相反数”求出m、n的值,然后相加计算即可得解.【详解】解:∵点P(m,-2020)与点Q(2021,n)关于原点对称,m=﹣2021,n=2020,mn=﹣1.故答案为:-1.【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.3、【分析】连接OB,交AC于点D,根据有一组邻边相等的平行四边形是菱形,可得四边形OABC为菱形,根据菱形的性质可得:,根据等边三角形的判定得出为等边三角形,由此得出,在直角三角形中利用勾股定理即可确定圆的半径,然后代入弧长公式求解即可.【详解】解:如图所示,连接OB,交AC于点D∵四边形OABC为平行四边形,∴四边形OABC为菱形, 为等边三角形,中,设,则解得:(舍去),的长为:故答案为:【点睛】题目主要考查菱形的判定和性质,等边三角形的判定和性质,勾股定理,弧长公式等,熟练掌握各个定理和公式是解题关键.4、##【分析】根据勾股定理求出AC,根据矩形性质得出∠ABC=90°,BD=ACBO=OD,求出BDOD,根据三角形中位线求出即可.【详解】解:∵四边形ABCD是矩形, ∴∠ABC=90°,BD=ACBO=ODAB=6cmBC=8cm∴由勾股定理得:(cm), DO=5cm, ∵点EF分别是AOAD的中点, EF=OD=2.5cm故答案为:2.5.【点睛】本题考查了矩形的性质的应用,勾股定理,三角形中位线的应用,解本题的关键是求出OD长及证明EF=OD5、720°720度【分析】根据多边形内角和可直接进行求解.【详解】解:由题意得:该正六边形的内角和为故答案为720°.【点睛】本题主要考查多边形内角和,熟练掌握多边形内角和公式是解题的关键.三、解答题1、(1);(2)10;(3)(4,2).【分析】(1)首先根据勾股定理求出OC=4,OA=8,然后利用待定系数法求解所在直线的解析式即可;(2)首先由折叠的性质得到AE=CE,然后在RtOCE中,根据勾股定理求出AE=CE=5,然后根据等腰三角形的性质求出CF=CE=5,最后根据三角形面积公式求解即可;(3)根据矩形的中心对称性质可得点M为矩形ABCD对角线的交点,然后根据中点坐标公式求解即可.【详解】解:(1)∵OA=2COOC=x,则OA=2xRtAOC中,由勾股定理可得OC2+OA2=AC2x2+(2x2=(42 解得x=4(x=﹣4舍去)OC=4,OA=8A(8,0),C(0,4)设直线AC解析式为y=kx+b,解得∴直线AC解析式为y=﹣x+4;(2)由折叠得AE=CEAE=CE=y,则OE=8﹣yRtOCE中,由勾股定理可得OE2+OC2=CE2∴(8﹣y2+42=y2解得y=5AE=CE=5 在矩形OABC中,BCOA∴∠CFE=∠AEF由折叠得∠AEF=∠CEF∴∠CFE=∠CEFCF=CE=5 SCEF=CFOC=×5×4=10 即重叠部分的面积为10;(3)∵矩形是一个中心对称图形,对称中心是对角线的交点,∴任何一个经过对角线交点的直线都把矩形的面积平分,所以点M即为矩形ABCD对角线的交点,即M点为AC的中点,A(8,0),C(0,4),M点坐标为(4,2).【点睛】此题考查了矩形的性质,勾股定理,待定系数法求一次函数表达式等知识,,解题的关键是熟练掌握矩形的性质,勾股定理,待定系数法求一次函数表达式.2、见解析【分析】根据直角三角形斜边上的中线等于斜边的一半和等腰三角形的性质即可证明.【详解】解:∵∠ABC=∠ADC=90°,∴△ABC和△ADC是直角三角形,∵点EAC的中点,EBACEDACEBED∴∠1=∠2.【点睛】本题考查了直角三角形斜边上的中线、等腰三角形的判定与性质,解决本题的关键是掌握直角三角形斜边上的中线等于斜边的一半.3、(1)PDPCPDPC;(2)成立,见解析;(3)2或4【分析】(1)根据直角三角形斜边中线的性质,可得,根据角之间的关系即可,即可求解;(2)过点PPTABBC的延长线于T,交AC于点O,根据全等三角形的判定与性质求解即可;(3)分两种情况,当点EBC的上方时和当点EBC的下方时,过点PPQBCQ,利用等腰直角三角形的性质求得,即可求解.【详解】解:(1)∵∠ACB=90°,ACBC∵点PAE的中点,故答案为:(2)结论成立.理由如下:过点PPTABBC的延长线于T,交AC于点O由勾股定理可得:∵点PAE的中点,中,(3)如图3﹣1中,当点EBC的上方时,过点PPQBCQ由(2)可得,,∴为等腰直角三角形由勾股定理得,如图3﹣2中,当点EBC的下方时,同法可得PCPD=2.综上所述,PC的长为4或2.【点睛】此题考查了等腰直角三角形的性质,全等三角形的判定与性质,勾股定理,解题的关键是熟练掌握相关基本性质,做辅助线,构造出全等三角形.4、见解析【分析】利用矩形性质以及等边对等角,证明,最后利用边角边即可证明【详解】解:四边形ABCD是矩形,中, 【点睛】本题主要是考查了矩形的性质、等边对等角以及全等三角形的判定,熟练地利用矩形性质以及等边对等角,求证边和角相等,进而证明三角形全等,这是解决该题的关键.5、见解析【分析】由已知条件可得DF=ABDFAB,从而可得四边形ABFD为平行四边形,则问题解决.【详解】的中位线DEABAD=DCDFABEF=DEDF=AB∴四边形ABFD为平行四边形AD=BFBF=DC【点睛】本题主要考查了平行四边形的判定与性质、三角形中位线的性质定理,掌握它们是解答本题的关键.当然本题也可以用三角形全等的知识来解决. 

    相关试卷

    初中数学北京课改版八年级下册第十五章 四边形综合与测试课时练习:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课时练习,共21页。试卷主要包含了如图,M等内容,欢迎下载使用。

    数学北京课改版第十五章 四边形综合与测试当堂达标检测题:

    这是一份数学北京课改版第十五章 四边形综合与测试当堂达标检测题,共28页。

    数学北京课改版第十五章 四边形综合与测试课堂检测:

    这是一份数学北京课改版第十五章 四边形综合与测试课堂检测,共30页。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map