北京课改版八年级下册第十五章 四边形综合与测试达标测试
展开
这是一份北京课改版八年级下册第十五章 四边形综合与测试达标测试,共28页。试卷主要包含了如图,在六边形中,若,则等内容,欢迎下载使用。
京改版八年级数学下册第十五章四边形专题测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,以O为圆心,长为半径画弧别交于A、B两点,再分别以A、B为圆心,以长为半径画弧,两弧交于点C,分别连接、,则四边形一定是( )
A.梯形 B.菱形 C.矩形 D.正方形
2、若一个正多边形的每一个外角都等于36°,则这个正多边形的边数是( )
A.7 B.8 C.9 D.10
3、如图,在△ABC中,AC=BC=8,∠BCA=60°,直线AD⊥BC于点D,E是AD上的一个动点,连接EC,将线段EC绕点C按逆时针方向旋转60°得到FC,连接DF,则在点E的运动过程中,DF的最小值是( )
A.1 B.1.5 C.2 D.4
4、如图是用若干个全等的等腰梯形拼成的图形,下列说法错误的是( )
A.梯形的下底是上底的两倍 B.梯形最大角是
C.梯形的腰与上底相等 D.梯形的底角是
5、在锐角△ABC中,∠BAC=60°,BN、CM为高,P为BC的中点,连接MN、MP、NP,则结论:①NP=MP;②AN:AB=AM:AC;③BN=2AN;④当∠ABC=60°时,MN∥BC,一定正确的有( )
A.①②③ B.②③④ C.①②④ D.①④
6、下列图形既是中心对称图形,又是轴对称图形的是( )
A. B.
C. D.
7、如图,在六边形中,若,则( )
A.180° B.240° C.270° D.360°
8、在平行四边形ABCD中,∠A=30°,那么∠B与∠A的度数之比为( )
A.4:1 B.5:1 C.6:1 D.7:1
9、若一个直角三角形的周长为,斜边上的中线长为1,则此直角三角形的面积为( )
A. B. C. D.
10、平面直角坐标系内与点P关于原点对称的点的坐标是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一个多边形的内角和比它的外角和的2倍还多180°,则它是________边形.
2、已知一个多边形的内角和与外角和的比是2:1,则它的边数为 _____.
3、若一个多边形的内角和是外角和的倍,则它的边数是_______.
4、点D、E、F分别是△ABC三边的中点,△ABC的周长为24,则△DEF的周长为______.
5、能使平行四边形ABCD为正方形的条件是___________(填上一个符合题目要求的条件即可).
三、解答题(5小题,每小题10分,共计50分)
1、(教材重现)如图是数学教材第135页的部分截图.
在多边形中,三角形是最基本的图形.如图4.4.5所示,每一个多边形都可以分割成若干个三角形.
数一数每个多边形中三角形的个数,你能发现什么规律?
在多边形中,连接不相邻的两个顶点,所得到的线段称为多边形的对角线.
(问题思考)结合如图思考,从多边形的一个顶点出发,可以得到的对角线的数量,并填写表:
多边形边数
四
五
六
……
十二
……
n
从一个顶点出发,得到对角线的数量
1条
……
……
(问题探究)n边形有n个顶点,每个顶点分别连接对角线后,每条对角线重复连接了一次,由此可推导出,n边形共有 对角线(用含有n的代数式表示).
(问题拓展)
(1)已知平面上4个点,任意三点不在同一直线上,一共可以连接 条线段.
(2)已知平面上共有15个点,任意三点不在同一直线上,一共可以连接 条线段.
(3)已知平面上共有x个点,任意三点不在同一直线上,一共可以连接 条线段(用含有x的代数式表示,不必化简).
2、如图,△AOB是等腰直角三角形.
(1)若A(﹣4,1),求点B的坐标;
(2)AN⊥y轴,垂足为N,BM⊥y轴,垂足为点M,点P是AB的中点,连PM,求∠PMO度数;
(3)在(2)的条件下,点Q是ON的中点,连PQ,求证:PQ⊥AM.
3、在如图所示的4×3网格中,每个小正方形的边长均为1,正方形顶点叫格点,连接两个网格格点的线段叫网格线段.点A固定在格点上.
(1)若a是图中能用网格线段表示的最小无理数,b是图中能用网格线段表示的最大无理数,则a= ,b= ,= ;
(2)请在网格中画出顶点在格点上且边长为的所有菱形ABCD,你画出的菱形面积分别为 , .
4、如图1,在平面直角坐标系中,且;
(1)试说明是等腰三角形;
(2)已知.写出各点的坐标:A( , ),B( , ),C( , ).
(3)在(2)的条件下,若一动点M从点B出发沿线段BA向点A运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止.
①若的一条边与BC平行,求此时点M的坐标;
②若点E是边AC的中点,在点M运动的过程中,能否成为等腰三角形?若能,求出此时点M的坐标;若不能,请说明理由.
5、如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E,CD=5,DB=13,求BE的长.
-参考答案-
一、单选题
1、B
【分析】
根据题意得到,然后根据菱形的判定方法求解即可.
【详解】
解:由题意可得:,
∴四边形是菱形.
故选:B.
【点睛】
此题考查了菱形的判定,解题的关键是熟练掌握菱形的判定方法.菱形的判定定理:①四条边都相等四边形是菱形;②一组邻边相等的平行四边形是菱形;③对角线垂直的平行四边形是菱形.
2、D
【分析】
根据多边形外角和定理求出正多边形的边数.
【详解】
∵正多边形的每一个外角都等于36°,
∴正多边形的边数==10.
故选:D.
【点睛】
本题考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.
3、C
【分析】
取线段AC的中点G,连接EG,根据等边三角形的性质以及角的计算即可得出CD=CG以及∠FCD=∠ECG,由旋转的性质可得出EC=FC,由此即可利用全等三角形的判定定理SAS证出△FCD≌△ECG,进而即可得出DF=GE,再根据点G为AC的中点,即可得出EG的最小值,此题得解.
【详解】
解:取线段AC的中点G,连接EG,如图所示.
∵AC=BC=8,∠BCA=60°,
∴△ABC为等边三角形,且AD为△ABC的对称轴,
∴CD=CG=AB=4,∠ACD=60°,
∵∠ECF=60°,
∴∠FCD=∠ECG,
在△FCD和△ECG中,
,
∴△FCD≌△ECG(SAS),
∴DF=GE.
当EG∥BC时,EG最小,
∵点G为AC的中点,
∴此时EG=DF=CD=BC=2.
故选:C.
【点睛】
本题考查了等边三角形的性质以及全等三角形的判定与性质,三角形中位线的性质,解题的关键是通过全等三角形的性质找出DF=GE,本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键.
4、D
【分析】
如图(见解析),先根据平角的定义可得,再根据可求出,由此可判断选项;先根据等边三角形的判定与性质可得,再根据平行四边形的判定可得四边形是平行四边形,根据平行四边形的性质可得,然后根据菱形的判定可得四边形是菱形,根据菱形的性质可得,最后根据线段的和差、等量代换可得,由此可判断选项.
【详解】
解:如图,,
,
,
,
梯形是等腰梯形,
,
则梯形最大角是,选项B正确;
没有指明哪个角是底角,
梯形的底角是或,选项D错误;
如图,连接,
,
是等边三角形,
,
,
点共线,
,
,
,
四边形是平行四边形,
,
,
,
,,
四边形是菱形,
,
,,选项A、C正确;
故选:D.
【点睛】
本题考查了等腰梯形、菱形的判定与性质、等边三角形的判定与性质等知识点,熟练掌握各判定与性质是解题关键.
5、C
【分析】
利用直角三角形斜边上的中线的性质即可判定①正确;利用含30度角的直角三角形的性质即可判定②正确,由勾股定理即可判定③错误;由等边三角形的判定及性质、三角形中位线定理即可判定④正确.
【详解】
∵CM、BN分别是高
∴△CMB、△BNC均是直角三角形
∵点P是BC的中点
∴PM、PN分别是两个直角三角形斜边BC上的中线
∴
故①正确
∵∠BAC=60゜
∴∠ABN=∠ACM=90゜−∠BAC=30゜
∴AB=2AN,AC=2AM
∴AN:AB=AM:AC=1:2
即②正确
在Rt△ABN中,由勾股定理得:
故③错误
当∠ABC=60゜时,△ABC是等边三角形
∵CM⊥AB,BN⊥AC
∴M、N分别是AB、AC的中点
∴MN是△ABC的中位线
∴MN∥BC
故④正确
即正确的结论有①②④
故选:C
【点睛】
本题考查了直角三角形斜边上中线的性质,含30度角的直角三角形的性质,等边三角形的判定及性质,勾股定理,三角形中位线定理等知识,掌握这些知识并正确运用是解题的关键.
6、D
【分析】
一个图形绕着某固定点旋转180度后能够与原来的图形重合,则称这个图形是中心对称图形,这个固定点叫做对称中心;如果一个图形沿着某条直线对折后,直线两旁的部分能够重合,则称这个图形是轴对称图形,这条直线叫做对称轴;根据这两个概念逐项判断即可.
【详解】
A、既不是中心对称图形,也不是轴对称图形,故不符合题意;
B、是轴对称图形,但不是中心对称图形,故不符合题意;
C、是中心对称图形,但不是轴对称图形,故不符合题意;
D、既是中心对称图形,也是轴对称图形,故符合题意.
【点睛】
本题考查了中心对称图形与轴对称图形的识别,掌握它们的概念是关键.
7、C
【分析】
根据多边形外角和求解即可.
【详解】
解: ,
,
故选:C
【点睛】
本题考查了多边形的外角和定理,掌握多边形外角和是解题的关键.
8、B
【分析】
根据平行四边形的性质先求出∠B的度数,即可得到答案.
【详解】
解:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠B=180°-∠A=150°,
∴∠B:∠A=5:1,
故选B.
【点睛】
本题主要考查了平行四边形的性质,解题的关键在于能够熟练掌握平行四边形邻角互补.
9、B
【分析】
根据直角三角形斜边上中线的性质,可得斜边为2,然后利用两直角边之间的关系以及勾股定理求出两直角边之积,从而确定面积.
【详解】
解:根据直角三角形斜边上中线的性质可知,斜边上的中线等于斜边的一半,得AC=2BD=2.
∵一个直角三角形的周长为3+,
∴AB+BC=3+-2=1+.
等式两边平方得(AB+BC)2= (1+) 2,
即AB2+BC2+2AB•BC=4+2,
∵AB2+BC2=AC2=4,
∴2AB•BC=2,AB•BC=,
即三角形的面积为×AB•BC=.
故选:B.
【点睛】
本题考查直角三角形斜边上的中线,勾股定理,三角形的面积等知识点的理解和掌握,巧妙求出AC•BC的值是解此题的关键,值得学习应用.
10、C
【分析】
根据关于原点对称的点,横坐标与纵坐标都互为相反数求解即可.
【详解】
解:由题意,得
点P(-2,3)关于原点对称的点的坐标是(2,-3),
故选:C.
【点睛】
本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.
二、填空题
1、七
【分析】
根据多边形的内角和公式(n-2)•180°与多边形的外角和定理列式进行计算即可求解.
【详解】
解:设多边形的边数为n,则
(n-2)•180°-2×360°=180°,
解得n=7.
故答案为:七.
【点睛】
本题考查了多边形的内角和公式与外角和定理,熟记公式与定理列出方程是解题的关键.
2、6
【分析】
根据多边形内角和公式及多边形外角和可直接进行求解.
【详解】
解:由题意得:,
解得:,
∴该多边形的边数为6;
故答案为6.
【点睛】
本题主要考查多边形的内角和及外角和,熟练掌握多边形内角和及外角和是解题的关键.
3、
【分析】
根据多边形的内角和公式(n−2)•180°以及外角和定理列出方程,然后求解即可.
【详解】
解:设这个多边形的边数是n,
根据题意得,(n−2)•180°=2×360°,
解得n=6.
答:这个多边形的边数是6.
故答案为:6.
【点睛】
本题考查了多边形的内角和公式与外角和定理,需要注意,多边形的外角和与边数无关,任何多边形的外角和都是360°.
4、12
【分析】
据D、E、F分别是AB、AC、BC的中点,可以判断DF、FE、DE为三角形中位线,利用中位线定理求出DF、FE、DE与AB、BC、CA的长度关系即可解答.
【详解】
解:∵如图所示,D、E、F分别是AB、BC、AC的中点,
∴ED、FE、DF为△ABC中位线,
∴DFBC,FEAB,DEAC,
∴△DEF的周长=DF+FE+DEBCABAC(AB+BC+CA)24=12.
故答案为:12.
【点睛】
本题考查了三角形的中位线定理,根据中点判断出中位线,再利用中位线定理是解题的基本思路.
5、AC=BD且AC⊥BD(答案不唯一)
【分析】
根据正方形的判定定理,即可求解.
【详解】
解:当AC=BD时,平行四边形ABCD为菱形,
又由AC⊥BD,可得菱形ABCD为正方形,
所以当AC=BD且AC⊥BD时,平行四边形ABCD为正方形.
故答案为:AC=BD且AC⊥BD(答案不唯一)
【点睛】
本题主要考查了正方形的判定,熟练掌握正方形的判定定理是解题的关键.
三、解答题
1、规律为:多边形的边数减去2,就是多边形中的三角形的个数; 2条,3条,9条,条;条;(1)6;(2)105;(3)
【分析】
通过观察多边形边数与其分割的三角形个数,即可发现规律
利用规律,多边形的边数一个顶点出发的对角线数,直接填写表格即可
先求出所有顶点得到的对角线之和,最后除以2即可得到边形的对角线条数
(1)根据题意,四边形一个顶点可以得到一条,四个点共4条,再去除一半,加上四个点单独连接的4条线段,即可得到答案.
(2)根据规律可以发现:十五边形的每个点可以得到12条,15点有180条,去掉一半,加上15个点组成的十五边形的的15条边,即可得到答案.
(3)通过上述两小题,即可以找到对应的规律,利用规律进行求解即可.
【详解】
由图可以直接发现:多边形的边数与其分割的三角形个数相差2,故规律为:多边形的边数减去2,就是多边形中的三角形的个数.
利用上图规律,便可以知道从五边形的一个顶点出发,得到2条对角线;六边形的一个顶点出发,得到3条对角线;十二边形的一个顶点出发,得到9条对角线;边形的一个顶点出发,得到条对角线.
边形的一个顶点可以得到条对角线,故个顶点共有,由于每条对角线重复连接了一次,故n边形共有条对角线
(1)解:有四个点可以组成四边形,每个点可以得到1条对角线,四个点共4条,
每条对角线重复连接了一次,
对角线条数为2,
四边形的边数为4,
一共可以连接2+4=6条线段.
(2)解:有15个点可以组成十五边形,每个点可以得到12条对角线,四个点共180条,
每条对角线重复连接了一次,
对角线条数为90,
四边形的边数为15,
一共可以连接90+15=105条线段.
(3)解:由前面题的规律可知:有个点可以组成边形,每个点可以得到条对角线,四个点共条,
每条对角线重复连接了一次,
对角线条数为,
四边形的边数为,
一共可以连接条线段.
【点睛】
本题主要是考察了图形类的规律问题以及列代数式,根据题意,找到对角线与多边形的边数关系是解决本题的关键,另外,注意本题是问的点与点之间可连接的线段数,不要只算对角线的条数.
2、(1)(1,4);(2)45°;(3)见解析
【分析】
(1)过点A作AE⊥x轴于E,过点B作BF⊥x轴于F,证明△OAE≌△BOF得到OF=AE,BF=OE,再由点A的坐标为(-4,1),得到OF=AE=1,BF=OE=4,则点B的坐标为(1,4);
(2)延长MP与AN交于H,证明△APH≌△BPM得到AH=BM,再由A点坐标为(-4,1),B点坐标为(1,4),得到AN=4,OM=4,BM=1,ON=1,则HN=AN-AH=AN-BM=3,MN=OM-ON=3,瑞出HN=MN,即可得到∠NHM=∠NMH=45°,即∠PMO=45°;
(3)连接OP,AM,取BM中点G,连接GP,则GP是△ABM的中位线,AM∥GP,证明△PQO≌△PGB得到∠OPQ=∠BPG,再由∠OPQ+∠BPQ=90°,得到∠BPG+∠BPQ=90°,即∠GPQ=90°,则PQ⊥PG,即PG⊥AM;
【详解】
解:(1)如图所示,过点A作AE⊥x轴于E,过点B作BF⊥x轴于F,
∴∠AEO=∠OFB=90°,
∴∠AOE+∠OAE=90°,
又∵∠AOB=90°,
∴∠AOE+∠BOF=90°,
∴∠OAE=∠BOF,
∵AO=OB,
∴△OAE≌△BOF(AAS),
∴OF=AE,BF=OE,
∵点A的坐标为(-4,1),
∴OF=AE=1,BF=OE=4,
∴点B的坐标为(1,4);
(2)如图所示,延长MP与AN交于H,
∵AH⊥y轴,BM⊥y轴,
∴BM∥AN,
∴∠MBP=∠HAP,∠AHP=∠BMP,
∵点P是AB的中点,
∴AP=BP,
∴△APH≌△BPM(AAS),
∴AH=BM,
∵A点坐标为(-4,1),B点坐标为(1,4),
∴AN=4,OM=4,BM=1,ON=1,
∴HN=AN-AH=AN-BM=3,MN=OM-ON=3,
∴HN=MN,
∴∠NHM=∠NMH=45°,即∠PMO=45°;
(3)如图所示,连接OP,AM,取BM中点G,连接GP,
∴GP是△ABM的中位线,
∴AM∥GP,
∵Q是ON的中点,G是BM的中点,ON=BM=1,
∴,
∵P是AB中点,△AOB是等腰直角三角形,∠AOB=90°,
∴,∠OAB=∠OBA=45°,∠OPB=90°
∴∠PAO=∠POA=45°,
∴∠POB=45°,
∵∠NAO+∠NOA=90°,∠NOA+∠BON=90°,
∴∠NAO=∠BON,
∵∠OAB=∠POB=45°,
∴∠BAN+∠NAO=∠POQ+∠BON,即∠BAN=∠POQ,
由(2)得∠GBP=∠BAN,
∴∠GBP=∠QOP,
∴△PQO≌△PGB(SAS),
∴∠OPQ=∠BPG,
∵∠OPQ+∠BPQ=90°,
∴∠BPG+∠BPQ=90°,即∠GPQ=90°,
∴PQ⊥PG,
∴PG⊥AM;
【点睛】
本题主要考查了坐标与图形,全等三角形的性质与判定,三角形中位线定理,等腰直角三角形的性质与判定等等,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.
3、(1),2,;(2)4或5.
【分析】
(1)借助网格得出最大的无理数以及最小的无理数,进而求出即可;
(2)根据要求周长边长为的菱形即可.
【详解】
解:(1)由题意得:a=,b=2,
∴;
故答案为:,2,;
(2)如图1,2中,菱形ABCD即为所求.
菱形ABCD的面积为=×4×2=4或菱形ABCD的面积=×=5,
故答案为:4或5.
【点睛】
本题考查作图-应用与设计作图,无理数,勾股定理,菱形的性质等知识,解题的关键是理解题意,正确作出图形解决问题.
4、(1)见解析;(2)12,0;-8,0;0,16;(3)①当M的坐标为(2,0)或(4,0)时,△OMN的一条边与BC平行;②当M的坐标为(0,10)或(12,0)或(,0)时,,△MOE是等腰三角形.
【分析】
(1)设,,,则,由勾股定理求出,即可得出结论;
(2)由的面积求出m的值,从而得到、、的长,即可得到A、B、C的坐标;
(3)①分当时,;当时,;得出方程,解方程即可;
②由直角三角形的性质得出,根据题意得出为等腰三角形,有3种可能:如果;如果;如果;分别得出方程,解方程即可.
【详解】
解:(1)证明:设,,,则,
在中,,
,
∴是等腰三角形;
(2)∵,,
∴,
∴,,,.
∴A点坐标为(12,0),B点坐标为(-8,0),C点坐标为(0,16),
故答案为:12,0;-8,0;0,16;
(3)①如图3-1所示,
当MN∥BC时,
∵AB=AC,
∴∠ABC=∠ACB,
∵MN∥BC,
∴∠AMN=∠ABC,∠ANM=∠ACB,
∴∠AMN=∠ANM,
∴AM=AN,
∴AM=BM,
∴M为AB的中点,
∵,
∴,
∴,
∴点M的坐标为(2,0);
如图3-2所示,当ON∥BC时,
同理可得,
∴,
∴M点的坐标为(4,0);
∴综上所述,当M的坐标为(2,0)或(4,0)时,△OMN的一条边与BC平行;
②如图3-3所示,当OM=OE时,
∵E是AC的中点,∠AOC=90°,,
∴,
∴此时M的坐标为(0,10);
如图3-4所示,当时,
∴此时M点与A点重合,
∴M点的坐标为(12,0);
如图3-5所示,当OM=ME时,过点E作EF⊥x轴于F,
∵OE=AE,EF⊥OA,
∴,
∴,
设,则,
∵,
∴,
解得,
∴M点的坐标为(,0);
综上所述,当M的坐标为(0,10)或(12,0)或(,0)时,,△MOE是等腰三角形.
【点睛】
本题主要考查了坐标与图形,勾股定理,等腰三角形的性质与判定,直角三角形斜边上的直线,三角形面积等等,解题的关键在于能够利用数形结合和分类讨论的思想求解.
5、
【分析】
由矩形的性质可知AB=DC,∠A=∠C=90°,由翻折的性质可知∠AB=BF,∠A=∠F=90°,于是可得到∠F=∠C,BF=DC,然后依据AAS可证明△DCE≌△BFE,依据勾股定理求得BC的长,由全等三角形的性质可知BE=DE,最后再△EDC中依据勾股定理可求得ED的长,从而得到BE的长.
【详解】
解:∵四边形ABCD为矩形,
∴AB=CD,∠A=∠C=90°
∵由翻折的性质可知∠F=∠A,BF=AB,
∴BF=DC,∠F=∠C.
在△DCE与△BEF中,
∴△DCE≌△BFE.
在Rt△BDC中,由勾股定理得:BC=.
∵△DCE≌△BFE,
∴BE=DE.
设BE=DE=x,则EC=12−x.
在Rt△CDE中,CE2+CD2=DE2,即(12−x)2+52=x2.
解得:x=.
∴BE=.
【点睛】
本题主要考查的是翻折的性质、勾股定理的应用、矩形的性质,依据勾股定理列出关于x的方程是解题的关键.
相关试卷
这是一份数学北京课改版第十五章 四边形综合与测试同步达标检测题,共31页。试卷主要包含了如图,M,下列图形中,是中心对称图形的是,下列图形中不是中心对称图形的是等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十五章 四边形综合与测试课时练习,共31页。试卷主要包含了如图,M,平行四边形中,,则的度数是等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十五章 四边形综合与测试当堂达标检测题,共24页。