搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年度强化训练京改版八年级数学下册第十五章四边形专题练习试卷(无超纲带解析)

    2021-2022学年度强化训练京改版八年级数学下册第十五章四边形专题练习试卷(无超纲带解析)第1页
    2021-2022学年度强化训练京改版八年级数学下册第十五章四边形专题练习试卷(无超纲带解析)第2页
    2021-2022学年度强化训练京改版八年级数学下册第十五章四边形专题练习试卷(无超纲带解析)第3页
    还剩28页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京课改版八年级下册第十五章 四边形综合与测试课时练习

    展开

    这是一份北京课改版八年级下册第十五章 四边形综合与测试课时练习,共31页。试卷主要包含了如图,M,平行四边形中,,则的度数是等内容,欢迎下载使用。
    京改版八年级数学下册第十五章四边形专题练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、一个多边形纸片剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为( )
    A.14或15或16 B.15或16或17 C.15或16 D.16或17
    2、 “垃圾分类,利国利民”,在2019年7月1日起上海开始正式实施垃圾分类,到2020年底先行先试的46个重点城市,要基本建成垃圾分类处理系统.以下四类垃圾分类标志的图形,其中既是轴对称图形又是中心对称图形的是( )

    A.可回收物 B.有害垃圾 C.厨余垃圾 D.其他垃圾
    3、如图,小明从点A出发沿直线前进10m到达点B,向左转,后又沿直线前进10m到达点C,再向左转30°后沿直线前进10m到达点...照这样走下去,小明第一次回到出发点A,一共走了( )米.

    A.80 B.100 C.120 D.140
    4、如图,M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P,则∠APN的度数是( )

    A.120° B.118° C.110° D.108°
    5、四边形的内角和与外角和的数量关系,正确的是(  )
    A.内角和比外角和大180° B.外角和比内角和大180°
    C.内角和比外角和大360° D.内角和与外角和相等
    6、下列各APP标识的图案是中心对称图形的是(  )
    A. B. C. D.
    7、下列图形中,既是中心对称图形,又是轴对称图形的个数是( )

    A.1 B.2 C.3 D.4
    8、如图,已知正方形ABCD的边长为6,点E,F分别在边AB,BC上,BE=CF=2,CE与DF交于点H,点G为DE的中点,连接GH,则GH的长为(  )

    A. B. C.4.5 D.4.3
    9、平行四边形中,,则的度数是( )
    A. B. C. D.
    10、下列图案中,是中心对称图形的是( )
    A. B. C. D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,已知ABCD,和的平分线相交于,,求的度数_____.

    2、如图,在中,,,,为上的两个动点,且,则的最小值是________.

    3、如图,每个小正方形的边长都为1,△ABC是格点三角形,点D为AC的中点,则线段BD的长为 _____.

    4、如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则cos∠EFG的值为________.

    5、如图,在矩形ABCD中,对角线AC,BD相交于O,EF过点O分别交AB,CD于E,F,已知AB=8cm,AD=5cm,那么图中阴影部分面积为_____cm2.

    三、解答题(5小题,每小题10分,共计50分)
    1、(教材呈现)如图是华师版八年级下册数学教材第117页的部分内容.

    结合图①,写出完整的证明过程
    (应用)如图②,直线EF分别交矩形ABCD的边AD,BC于点E,F,将矩形ABCD沿EF翻折,使点C的对称点与点A重合,点D的对称点为G,若AB=4,BC=5,则EF的长为 .
    (拓展)如图③,直线EF分别交平行四边形ABCD的边AD,BC于点E,F,将平行四边形ABCD沿EF翻折,使点C的对称点与点A重合,点D的对称点为G,若AB=,BC=6,∠C=45°,则五边形ABFEG的周长为 .

    2、综合与实践
    (1)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,则MN,AM,CN的数量关系为    .

    (2)如图2,在四边形ABCD中,BC∥AD,AB=BC,∠A+∠C=180°,点M、N分别在AD、CD上,若∠MBN=∠ABC,试探索线段MN、AM、CN有怎样的数量关系?请写出猜想,并给予证明.
    (3)如图3,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M、N分别在DA、CD的延长线上,若∠MBN=∠ABC,试探究线段MN、AM、CN的数量关系为    .
    3、在平面直角坐标系中,过A(0,4)的直线a垂直于y轴,点M(9,4)为直线a上一点,若点P从点M出发,以每秒2cm的速度沿直线a向左移动,点Q从原点同时出发,以每秒1cm的速度沿x轴向右移动,
    (1)几秒后PQ平行于y轴?
    (2)在点P、Q运动的过程中,若线段OQ=2AP,求点P的坐标.

    4、如图,是的中位线,延长到,使,连接.
    求证:.


    5、(探究发现)
    (1)如图1,△ABC中,AB=AC,∠BAC=90°,点D为BC的中点,E、F分别为边AC、AB上两点,若满足∠EDF=90°,则AE、AF、AB之间满足的数量关系是   .
    (类比应用)
    (2)如图2,△ABC中,AB=AC,∠BAC=120°,点D为BC的中点,E、F分别为边AC、AB上两点,若满足∠EDF=60°,试探究AE、AF、AB之间满足的数量关系,并说明理由.
    (拓展延伸)
    (3)在△ABC中,AB=AC=5,∠BAC=120°,点D为BC的中点,E、F分别为直线AC、AB上两点,若满足CE=1,∠EDF=60°,请直接写出AF的长.


    -参考答案-
    一、单选题
    1、A
    【分析】
    由题意先根据多边形的内角和公式先求出新多边形的边数,然后再根据截去一个角的情况进行讨论即可.
    【详解】
    解:设新多边形的边数为n,
    则(n-2)•180°=2340°,
    解得:n=15,
    ①若截去一个角后边数增加1,则原多边形边数为14,
    ②若截去一个角后边数不变,则原多边形边数为15,
    ③若截去一个角后边数减少1,则原多边形边数为16,
    所以多边形的边数可以为14,15或16.
    故选:A.
    【点睛】
    本题考查多边形内角与外角,熟练掌握多边形的内角和公式(n-2)•180°(n为边数)是解题的关键.
    2、B
    【分析】
    由题意根据轴对称图形和中心对称图形的定义对各选项进行判断,即可得出答案.
    【详解】
    解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;
    B、既是轴对称图形,也是中心对称图形,故此选项符合题意;
    C、是轴对称图形,不是中心对称图形,故此选项不合题意;
    D、既不是轴对称图形,也不是中心对称图形,故此选项不符合题意;
    故选:B.
    【点睛】
    本题考查中心对称图形与轴对称图形的概念,注意掌握判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    3、C
    【分析】
    由小明第一次回到出发点A,则小明走过的路程刚好是一个多边形的周长,由多边形的外角和为,每次的转向的角度的大小刚好是多边形的一个外角,则先求解多边形的边数,从而可得答案.
    【详解】
    解:由 可得:小明第一次回到出发点A,
    一个要走米,
    故选C
    【点睛】
    本题考查的是多边形的外角和的应用,掌握“由多边形的外角和为得到一共要走12个10米”是解本题的关键.
    4、D
    【分析】
    由五边形的性质得出AB=BC,∠ABM=∠C,证明△ABM≌△BCN,得出∠BAM=∠CBN,由∠BAM+∠ABP=∠APN,即可得出∠APN=∠ABC,即可得出结果.
    【详解】
    解:∵五边形ABCDE为正五边形,
    ∴AB=BC,∠ABM=∠C,
    在△ABM和△BCN中

    ∴△ABM≌△BCN(SAS),
    ∴∠BAM=∠CBN,
    ∵∠BAM+∠ABP=∠APN,
    ∴∠CBN+∠ABP=∠APN=∠ABC=
    ∴∠APN的度数为108°;
    故选:D.
    【点睛】
    本题考查了全等三角形的判定与性质、多边形的内角和定理;熟练掌握五边形的形状,证明三角形全等是解决问题的关键.
    5、D
    【分析】
    直接利用多边形内角和定理分别分析得出答案.
    【详解】
    解:A.四边形的内角和与外角和相等,都等于360°,故本选项表述错误;
    B.四边形的内角和与外角和相等,都等于360°,故本选项表述错误;
    C.六四边形的内角和与外角和相等,都等于360°,故本选项表述错误;
    D.四边形的内角和与外角和相等,都等于360°,故本选项表述正确.
    故选:D.
    【点睛】
    本题考查了四边形内角和和外角和,解题关键是熟记四边形内角和与外角和都是360°.
    6、C
    【分析】
    根据中心对称图形的概念对各选项分析判断即可得解.
    【详解】
    A、图形关于中心旋转180°不能完全重合,所以不是中心对称图形,故本选项不符合题意;
    B、图形关于中心旋转180°不能完全重合,所以不是中心对称图形,故本选项不符合题意;
    C、图形关于中心旋转180°能完全重合,所以是中心对称图形,故本选项符合题意;
    D、图形关于中心旋转180°不能完全重合,所以不是中心对称图形,故本选项不符合题意.
    故选:C.
    【点睛】
    本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    7、B
    【分析】
    根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解
    【详解】
    第一个图形是中心对称图形,又是轴对称图形,
    第二个图形是中心对称图形,又是轴对称图形,
    第三个图形不是中心对称图形,是轴对称图形,
    第四个图形不是中心对称图形,是轴对称图形,
    综上所述第一个和第二个图形既是中心对称图形,又是轴对称图形.
    故选:B.
    【点睛】
    点睛本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    8、A
    【分析】
    根据正方形的四条边都相等可得BC=DC,每一个角都是直角可得∠B=∠DCF=90°,然后利用“边角边”证明△CBE≌△DCF,得∠BCE=∠CDF,进一步得∠DHC=∠DHE=90°,从而知GH=DE,利用勾股定理求出DE的长即可得出答案.
    【详解】
    解:∵四边形ABCD为正方形,
    ∴∠B=∠DCF=90°,BC=DC,
    在△CBE和△DCF中,

    ∴△CBE≌△DCF(SAS),
    ∴∠BCE=∠CDF,
    ∵∠BCE+∠DCH=90°,
    ∴∠CDF+∠DCH=90°,
    ∴∠DHC=∠DHE=90°,
    ∵点G为DE的中点,
    ∴GH=DE,
    ∵AD=AB=6,AE=AB﹣BE=6﹣2=4,
    ∴,
    ∴GH=.
    故选A.
    【点睛】
    本题主要考查了正方形的性质,全等三角形的性质与判定,勾股定理,直角三角形斜边上的中线,解题的关键在于能够熟练掌握相关知识进行求解.
    9、B
    【分析】
    根据平行四边形对角相等,即可求出的度数.
    【详解】
    解:如图所示,

    ∵四边形是平行四边形,
    ∴,
    ∴,
    ∴.
    故:B.
    【点睛】
    本题考查了平行四边形的性质,解题的关键是掌握平行四边形的性质.
    10、B
    【分析】
    由题意依据一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形对各选项分析判断即可.
    【详解】
    解:A、C、D都是轴对称图形,只有B选项是中心对称图形.
    故选:B.
    【点睛】
    本题考查中心对称图形的识别,注意掌握中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    二、填空题
    1、110°度
    【分析】
    过点E作EH∥AB,然后由AB∥CD,可得AB∥EH∥CD,然后根据两直线平行内错角相等可得∠ABE=∠BEH,∠CDE=∠DEH,然后根据周角的定义可求∠ABE+∠CDE的度数;再根据角平分线的定义求出∠EBF+∠EDF的度数,然后根据四边形的内角和定理即可求∠BFD的度数.
    【详解】
    解:过点E作EH∥AB,如图所示,

    ∵AB∥CD,
    ∴AB∥EH∥CD,
    ∴∠ABE=∠BEH,∠CDE=∠DEH,
    ∵∠BEH+∠DEH+∠BED=360°,∠BED=140°,
    ∴∠BEH+∠DEH=220°,
    ∴∠ABE+∠CDE=220°,
    ∵∠ABE和∠CDE的平分线相交于F,
    ∴∠EBF+∠EDF=(∠ABE+∠CDE)=110°,
    ∵∠BFD+∠BED+∠EBF+∠EDF=360°,
    ∴∠BFD=110°.
    故答案为:110°.
    【点睛】
    本题考查了平行线的性质,解题的关键是:熟记两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补.另外过点E作EH∥AB,也是解题的关键.
    2、
    【分析】
    过点A作AD//BC,且AD=MN,连接MD,则四边形ADMN是平行四边形,作点A关于BC的对称点A′,连接AA′交BC于点O,连接A′M,三点D、M、A′共线时,最小为A′D的长,利用勾股定理求A′D的长度即可解决问题.
    【详解】
    解:过点A作AD//BC,且AD=MN,连接MD,

    则四边形ADMN是平行四边形,
    ∴MD=AN,AD=MN,
    作点A关于BC的对称点A′,连接A A′交BC于点O,连接A′M,
    则AM=A′M,
    ∴AM+AN=A′M+DM,
    ∴三点D、M、A′共线时,A′M+DM最小为A′D的长,
    ∵AD//BC,AO⊥BC,
    ∴∠DA=90°,
    ∵,,,
    ∴BC=
    BO=CO=AO=,
    ∴,
    在Rt△AD中,由勾股定理得:
    D=
    ∴的最小是值为:,
    故答案为:
    【点睛】
    本题主要考查了等腰三角形的性质,平行四边形的判定与性质,勾股定理等知识,构造平行四边形将AN转化为DM是解题的关键.
    3、##
    【分析】
    根据勾股定理列式求出AB、BC、AC,再利用勾股定理逆定理判断出△ABC是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半解答即可.
    【详解】
    解:,,,

    ∴∠ABC=90°,
    ∵点D为AC的中点,
    ∴BD为AC边上的中线,
    ∴BD=AC,
    故答案为:
    【点睛】
    本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,勾股定理逆定理的应用,判断出△ABC是直角三角形是解题的关键.
    4、
    【分析】
    根据题意连接BE,连接AE交FG于O,如图,利用菱形的性质得△BDC为等边三角形,∠ADC=120°,再在在Rt△BCE中计算出BE=CE=,然后证明BE⊥AB,利用勾股定理计算出AE,从而得到OA的长;设AF=x,根据折叠的性质得到FE=FA=x,在Rt△BEF中利用勾股定理得到(2-x)2+()2=x2,解得x,然后在Rt△AOF中利用勾股定理计算出OF,再利用余弦的定义求解即可.
    【详解】
    解:连接BE,连接AE交FG于O,如图,

    ∵四边形ABCD为菱形,∠A=60°,
    ∴△BDC为等边三角形,∠ADC=120°,
    ∵E点为CD的中点,
    ∴CE=DE=1,BE⊥CD,
    在Rt△BCE中,BE=CE=,
    ∵AB∥CD,
    ∴BE⊥AB,
    ∴.
    ∴,
    设AF=x,
    ∵菱形纸片翻折,使点A落在CD的中点E处,
    ∴FE=FA=x,
    ∴BF=2-x,
    在Rt△BEF中,(2-x)2+()2=x2,
    解得:,
    在Rt△AOF中,,
    ∴.
    故答案为: .
    【点睛】
    本题考查了折叠的性质以及菱形的性质,注意掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
    5、10
    【分析】
    利用矩形性质,求证,将阴影部分的面积转为的面积,最后利用中线平分三角形的面积,求出的面积,即可得到阴影部分的面积.
    【详解】
    解:四边形为矩形,
    ,,,

    在与中,


    阴影部分的面积最后转化为了的面积,
    中,,
    平分,
    阴影部分的面积:,
    故答案为:10.
    【点睛】
    本题主要是考查了矩形的性质以全等三角形的判定与性质以及中线平分三角形面积,熟练利用矩形性质,证明三角形全等,将阴影部分面积转化为其他图形的面积,这是解决本题的关键.

    三、解答题
    1、【教材呈现】见解析;【应用】 ;【拓展】
    【分析】
    (教材呈现)由“ASA”可证△AOE≌△COF,可得OE=OF,由对角线互相平分的四边形是平行四边形可证四边形AFCE是平行四边形,即可证平行四边形AFCE是菱形;
    (应用)过点F作FH⊥AD于H,由折叠的性质可得AF=CF,∠AFE=∠EFC,由勾股定理可求BF、EF的长,
    (拓展)过点A作AN⊥BC,交CB的延长线于N,过点F作FM⊥AD于M,由等腰直角三角形的性质可求AN=BN=3,由勾股定理可求AE=AF,再利用勾股定理可求EF的长,再求出五边形ABFEG的周长.
    【详解】
    解:(教材呈现)∵四边形ABCD是矩形,
    ∴AECF,
    ∴∠EAO=∠FCO,
    ∵EF垂直平分AC,
    ∴AO=CO,∠AOE=∠COF=90°,
    ∴△AOE≌△COF(ASA)
    ∴OE=OF,
    又∵AO=CO,
    ∴四边形AFCE是平行四边形,
    ∵EF⊥AC,
    ∴平行四边形AFCE是菱形;
    (应用)如图,连接AC、EC
    由(教材呈现)可得平行四边形AFCE是菱形,

    ∴AF=CF,∠AFE=∠EFC,
    ∵AF2=BF2+AB2,
    ∴(5−BF)2=BF2+16,
    ∴BF=,
    ∴AF=CF=,
    ∵AB⊥BC,
    ∴△ABC是直角三角形
    ∴AC=
    ∵S四边形AFCE=,

    ∴EF=,
    故答案为:.
    (拓展)如图,过点A作AN⊥BC,交CB的延长线于N,过点F作FM⊥AD于M,

    ∵四边形ABCD是平行四边形,∠C=45°,
    ∴∠ABC=135°,
    ∴∠ABN=45°,
    ∵AN⊥BC,
    ∴∠ABN=∠BAN=45°,
    ∴△ANB是等腰直角三角形
    ∵AN2+BN2=AB2,AN=BN
    ∴AN=BN=3,NC=6+3=9
    ∵将▱ABCD沿EF翻折,使点C的对称点与点A重合,
    ∴AF=CF,∠AFE=∠EFC,
    ∵ADBC,
    ∴∠AEF=∠EFC=∠AFE,
    ∴AE=AF,
    ∵AF2=AN2+NF2,
    ∴AF2=9+(9−AF)2,
    ∴AF=5,
    ∴AE=AF=5,
    ∵ANMF,ADBC,
    ∴四边形ANFM是平行四边形,
    ∵AN⊥BC,
    ∴四边形ANFM是矩形,
    ∴AN=MF=3,
    ∴AM==4,
    ∴ME=AE−AM=1,
    ∴EF==,
    ∵BF=NF-BN=9-AF-BN=1,DE=GE=AD-AE=1
    ∴五边形ABFEG的周长为AB+BF+EF+GE+AG=AB+BF+EF+CD+DE=+1+++1=
    故答案为:.
    【点睛】
    本题是四边形综合题,考查了平行四边形的性质,菱形的性质,折叠的性质,全等三角形的判定和性质,勾股定理等知识,添加恰当辅助线构造直角三角形是本题的关键.
    2、(1)MN=AM+CN;(2)MN=AM+CN,理由见解析;(3)MN=CN-AM,理由见解析
    【分析】
    (1)把△ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,可得到点M'、C、N三点共线,再由∠MBN=45°,可得∠M'BN=∠MBN,从而证得△NBM≌△NBM',即可求解;
    (2)把△ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,由∠A+∠C=180°,可得点M'、C、N三点共线,再由∠MBN=∠ABC,可得到∠M'BN=∠MBN,从而证得△NBM≌△NBM',即可求解;
    (3)在NC上截取C M'=AM,连接B M',由∠ABC+∠ADC=180°,可得∠BAM=∠C,再由AB=BC,可证得△ABM≌△CB M',从而得到AM=C M',BM=B M',∠ABM=∠CB M',进而得到∠MA M'=∠ABC,再由∠MBN=∠ABC,可得∠MBN=∠M'BN,从而得到△NBM≌△NBM',即可求解.
    【详解】
    解:(1)如图,把△ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,

    在正方形ABCD中,∠A=∠BCD=∠ABC=90°,AB=BC ,
    ∴∠BCM'+∠BCD=180°,
    ∴点M'、C、N三点共线,
    ∵∠MBN=45°,
    ∴∠ABM+∠CBN=45°,
    ∴∠M'BN=∠M'BC+∠CBN=∠ABM+∠CBN=45°,
    即∠M'BN=∠MBN,
    ∵BN=BN,
    ∴△NBM≌△NBM',
    ∴MN= M'N,
    ∵M'N= M'C+CN,
    ∴MN= M'C+CN=AM+CN;
    (2)MN=AM+CN;理由如下:
    如图,把△ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,

    ∵∠A+∠C=180°,
    ∴∠BCM'+∠BCD=180°,
    ∴点M'、C、N三点共线,
    ∵∠MBN=∠ABC,
    ∴∠ABM+∠CBN=∠ABC=∠MBN,
    ∴∠CBN+∠M'BC =∠MBN,即∠M'BN=∠MBN,
    ∵BN=BN,
    ∴△NBM≌△NBM',
    ∴MN= M'N,
    ∵M'N= M'C+CN,
    ∴MN= M'C+CN=AM+CN;
    (3)MN=CN-AM,理由如下:
    如图,在NC上截取C M'=AM,连接B M',

    ∵在四边形ABCD中,∠ABC+∠ADC=180°,
    ∴∠C+∠BAD=180°,
    ∵∠BAM+∠BAD=180°,
    ∴∠BAM=∠C,
    ∵AB=BC,
    ∴△ABM≌△CB M',
    ∴AM=C M',BM=B M',∠ABM=∠CB M',
    ∴∠MA M'=∠ABC,
    ∵∠MBN=∠ABC,
    ∴∠MBN=∠MA M'=∠M'BN,
    ∵BN=BN,
    ∴△NBM≌△NBM',
    ∴MN= M'N,
    ∵M'N=CN-C M',
    ∴MN=CN-AM.
    故答案是:MN=CN-AM.
    【点睛】
    本题主要考查了正方形的性质,全等三角形的性质和判定,图形的旋转,根据题意做适当辅助线,得到全等三角形是解题的关键.
    3、(1)3秒后平行于轴;(2)或.
    【分析】
    (1)设秒后平行于轴,先求出的长,再根据矩形的判定与性质可得,由此建立方程,解方程即可得;
    (2)分①点在点右侧,②点在点左侧两种情况,分别根据建立方程,解方程即可得.
    【详解】
    解:(1),

    设秒后平行于轴,

    垂直于轴,垂直于轴,平行于轴,
    四边形是矩形,
    ,即,
    解得,
    即3秒后平行于轴;
    (2)由题意得:经过秒后,,
    垂直于轴,点在直线上,且点的坐标为,
    点的纵坐标为4,
    ①当点在点右侧时,,
    由得:,
    解得,

    此时点的坐标为;
    ②当点在点左侧时,,
    由得:,
    解得,

    此时点的坐标为;
    综上,点的坐标为或.
    【点睛】
    本题考查了坐标与图形、矩形的判定与性质等知识点,较难的是题(2),正确分两种情况讨论是解题关键.
    4、见解析
    【分析】
    由已知条件可得DF=AB及DF∥AB,从而可得四边形ABFD为平行四边形,则问题解决.
    【详解】
    ∵是的中位线
    ∴DE∥AB,,AD=DC
    ∴DF∥AB
    ∵EF=DE
    ∴DF=AB
    ∴四边形ABFD为平行四边形
    ∴AD=BF
    ∴BF=DC
    【点睛】
    本题主要考查了平行四边形的判定与性质、三角形中位线的性质定理,掌握它们是解答本题的关键.当然本题也可以用三角形全等的知识来解决.
    5、(1)AB=AF+AE;(2)AE+AF=AB,理由见解析;(3)或
    【分析】
    (1)证明△BDF≌OADE,可得BF=AE,从而证明AB=AF+AE;
    (2)取AB中点G,连接DG,利用ASA证明△GDF≌△ADE,得到GF=AE,可得AG=AB=AF+FG=AE+AF;
    (3)分两种情况:当点E在线段AC上时或当点E在AC延长线上时,取AC的中点H,连接DH,同理证明△ADF≌△HDE,得到AF=HE,从而求解.
    【详解】
    (1)

    如图1,∵AB=AC,∠BAC=90°,
    ∴∠B=∠C=45°,
    ∵D为BC中点,
    ∴AD⊥BC,∠BAD=∠CAD=45°,AD=BD=CD,
    ∴∠ADB=∠ADF+∠BDF=90°,
    ∵∠EDF=∠ADE+∠ADF=90°,
    ∴∠BDF=∠ADE,
    ∵BD=AD,∠B=∠CAD=45°,
    ∴△BDF≌△ADE(ASA),
    ∴BF=AE,
    ∴AB=AF+BF=AF+AE;
    故答案为:AB=AF+AE;
    (2)

    AE+AF=AB.理由是:
    如图2,取AB中点G,连接DG,
    ∵点G是斜边中点,
    ∴DG=AG=BG=AB,
    ∵AB=AC,∠BAC=120°,点D为BC的中点,
    ∴∠BAD=∠CAD=60°,
    ∴∠GDA=∠BAD=60°,即∠GDF+∠FDA=60°,
    又∵∠FAD+∠ADE=∠FDE=60°,
    ∴∠GDF=∠ADE,
    ∵DG=AG,∠BAD=60°,
    ∴△ADG为等边三角形,
    ∴∠AGD=∠CAD=60°,GD=AD,
    ∴△GDF≌△ADE(ASA),
    ∴GF=AE,
    ∴AG=AB=AF+FG=AE+AF,
    ∴AE+AF=AB;
    (3)

    当点E在线段AC上时,如图3,取AC的中点H,连接DH,
    当AB=AC=5,CE=1,∠EDF=60°时,
    AE=4,此时F在BA的延长线上,
    同(2)可得:△ADF≌△HDE (ASA),
    ∴AF=HE,
    ∵AH=CH=AC=,CE=1,
    ∴,

    当点E在AC延长线上时,如图4,
    同理可得:;
    综上:AF的长为或.
    【点睛】
    本题考查三角形综合问题,掌握全等三角形的判定与性质是解题的关键

    相关试卷

    2021学年第十五章 四边形综合与测试随堂练习题:

    这是一份2021学年第十五章 四边形综合与测试随堂练习题,共25页。

    初中数学北京课改版八年级下册第十五章 四边形综合与测试课堂检测:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课堂检测,共28页。试卷主要包含了以下分别是回收,下列图形中,是中心对称图形的是等内容,欢迎下载使用。

    北京课改版八年级下册第十五章 四边形综合与测试达标测试:

    这是一份北京课改版八年级下册第十五章 四边形综合与测试达标测试,共28页。试卷主要包含了如图,在六边形中,若,则等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map