初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试练习
展开
这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试练习,共20页。试卷主要包含了一组数据等内容,欢迎下载使用。
京改版八年级数学下册第十七章方差与频数分布专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、有40个数据,其中最大值为35,最小值为15,若取组距为4,则应该分的组数是( ).A.4 B.5 C.6 D.72、某养羊场对200头生羊量进行统计,得到频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中质量在77.5kg及以上的生羊的只数是( )A.180 B.140 C.120 D.1103、下列说法正确的是( )A.调查“行云二号”各零部件的质量适宜采用抽样调查方式B.5位同学月考数学成绩分别为95,83,76,83,100,则这5位同学月考数学成绩的众数为83C.某游戏的中奖率为1%,则买100张奖券,一定有1张中奖D.某校举办了一次生活大百科知识竞赛,若甲、乙两班的成绩平均数相同,方差分别为40,80,则乙班成绩更稳定4、为了了解某校七年级名学生的跳绳情况(秒跳绳的次数),随机对该年级名学生进行了调查,根据收集的数据绘制了如图所示的频数分布直方图(每组数据包括左端值不包括右端值,如最左边第一组的次数为:,则以下说法正确的是( )A.跳绳次数不少于次的占B.大多数学生跳绳次数在范围内C.跳绳次数最多的是次D.由样本可以估计全年级人中跳绳次数在次的大约有人5、某企业为了解员工给灾区“爱心捐款”的情况,随机抽取部分员工的捐款金额整理绘制成如图所示的直方图,根据图中信息,下列结论错误的是( )A.样本中位数是200元B.样本容量是20C.该企业员工捐款金额的极差是450元D.该企业员工最大捐款金额是500元6、如表是某次射击比赛中10名选手的射击成绩(环):射击成绩(环)678910人数(人)12421关于这10名选手的射击环数,下列说法不正确的是( )A.众数是8 B.中位数是5 C.平均数是8 D.方差是1.27、一组数据:1,3,3,4,5,它们的极差是( )A.2 B.3 C.4 D.58、在春季运动会中,有9名学生参加100米比赛,并且他们的最终成绩各不相同,若一名学生想知道自己能否进入前5名,除了要了解自己的成绩外,还要了解这9名学生成绩的( )A.众数 B.中位数 C.平均数 D.方差9、已知两组数据x1,x2,x3和x1+1,x2+1,x3+1,则这两组数据没有改变大小的统计量是( )A.平均数 B.中位数 C.众数 D.方差10、篮球队5名场上队员的身高(单位:cm)分别是:189,191,193,195,196.现用一名身高为192cm的队员换下身高为196cm的队员,与换人前相比,场上队员的身高( )A.平均数变小,方差变小 B.平均数变小,方差变大C.平均数变大,方差变小 D.平均数变大,方差变大第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一组数据5, 4, 2, 4, 5的方差是________.2、对某班同学的身高进行统计(单位:厘米),频数分布表中,165.5-170.5这一组学生人数是12,频率是0.24,则该班共有________名学生;155.5-160.5这一组学生人数是8,频率是________.3、下表中记录了甲、乙两名运动员跳远选拔赛成绩(单位:cm)的平均数和方差.要从中选择一名运动员参加决赛,最合适的运动员是______. 甲乙平均数368320方差2.55.6 4、已知一组数据x1,x2,x3,x4,x5的平均数是2,方差是5,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数和方差的和为_______.5、为了在甲、乙两位同学中选拔一人参加市电视台组织的成语听写大会,对他们的成语水平进行了10次跟踪测试.分析两人的成绩发现:=84, =83.2,=13.2, =26.36,由此学校决定让甲去参加比赛,理由是_______.三、解答题(5小题,每小题10分,共计50分)1、为了解中考体育科目训练情况,某区从全区九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如图、图2所示的两幅不完整的统计图,请根据统计中的信息解答下列问题:(1)求本次抽样测试的学生人数是多少;(2)通过计算把条形统计图补充完整;(3)该区九年级有学生3500名,如果全部参加这次中考体育科目考试,请估计不及格的人数有多少人.2、安岳县教育和体育局在全县中小学开展群文阅读活动,要求每人暑假假期阅读3-6本图书.活动结束后随机抽查了40名学生每人的阅读图书量,并将其分为四类:A:三本,B:四本,C:五本,D:六本,将各类的人数绘制成扇形统计图(图1)和条形统计图(图2),经确定扇形统计图是正确的,而条形统计图存在错误.(1)请指出条形统计图中存在的错误,并说明理由;(2)若该校有3000名学生,请估计全校共有多少名学生阅读量为B类.(3)请计算D类学生在扇形统计图中的圆心角.3、近年来,中学生的身体素质普遍下降,某校为了提高本校学生的身体素质,落实教育部门“在校学生每天体育锻炼时间不少于1小时”的文件精神,对部分学生的每天体育锻炼时间进行了调查统计.以下是本次调查结果的统计表和统计图:组别ABCD时间t(分钟)t<4040≤t<6060≤t<8080≤t<100人数1230a24(1)求出本次被调查的学生数;(2)请求出统计表中a的值;(3)根据调查结果,请你估计该校2400名学生中每天体育锻炼时间不少于1小时的学生人数.4、在一组数据中,各数据与它们的平均数的差的绝对值的平均数,即叫做这组数据的“平均差”,“平均差”也能描述一组数据的离散程度,“平均差”越大,说明数据的离散程度越大.(1)分别计算下列两组数据的“平均差”,并根据计算结果比较这两组数据的稳定性; 甲:9,11,8,12,7,13,6,14,10,10.乙:8,9,10,11,7,12,9,11,10,13.(2)分别计算甲、乙两组数据的方差,并根据计算结果比较这两组数据的稳定性.5、今年12月4日是第八个国家宪法日,宪法是国家的根本大法,是治国安邦的总章程.为贯彻落实习近平总书记关于宪法学习宣传教育的系列重要指示精神,某校开展了丰富多彩的宪法宣传教育活动,并分别在活动前后举办了有关学宪法的知识竞赛(百分制),活动结束后,在七年级随机抽取25名学生活动前后的竞赛成绩进行整理和描述,下面给出部分信息:活动后被抽取学生竞赛成绩为:82, 88, 96, 98, 84, 86, 89, 99, 94, 90, 79, 91, 99, 98, 87, 92, 86, 99, 98, 84, 93, 88, 94, 89, 98.活动后被抽取学生竞赛成绩频数分布表成绩x(分)频数(人)75≤x<80180≤x<85385≤x<90790≤x<95m95≤x<100n请你根据以上信息解决下列问题:(1)本次调查的样本容量是 ,表中m= ; n= ;(2)若想直观地反映出活动前后被抽取学生竞赛成绩的变化情况,应该把数据整理,绘制成 统计图;(填“扇形”“条形”或“折线”)(3)若90分及以上都属于A等级,根据调查结果,请估计该校2000名同学中活动后的竞赛成绩为A等级的学生有多少人? -参考答案-一、单选题1、C【分析】根据组数=(最大值-最小值)÷组距计算即可.【详解】解:∵在样本数据中最大值与最小值的差为35-15=20,
又∵组距为4,
∵20÷4=5,
∴应该分成5+1=6组.
故选:C.【点睛】本题考查的是组数的计算,解题关键是明确用最大值减最小值的差除以组距可得组数.2、B【分析】根据题意和直方图中的数据可以求得质量在77.5kg及以上的生猪数,本题得以解决.【详解】解:由直方图可得,质量在77.5kg及以上的生猪:90+30+20=140(头),故选B.【点睛】本题考查频数分布直方图,解答本题的关键是明确题意,利用数形结合的思想解答.3、B【分析】分别对各个选项进行判断,即可得出结论.【详解】解:A、调查“行云二号”各零部件的质量适宜采用全面调查方式,原说法错误,故该选项不符合题意;B、5位同学月考数学成绩分别为95,83,76,83,100,则这5位同学月考数学成绩的众数为83,正确,故该选项符合题意;C、个游戏的中奖率是1%,只能说买100张奖券,有1%的中奖机会,原说法错误,故该选项不符合题意;D、某校举办了一次生活大百科知识竞赛,若甲、乙两班的成绩平均数相同,方差分别为40,80,∵40<80,则甲班成绩更稳定,原说法错误,故该选项不符合题意;故选:B.【点睛】本题考查了概率、众数、全面调查、抽样调查以及方差知识;熟练掌握有关知识是解题的关键.4、A【分析】根据频数发布直方图,跳绳次数不少于100次的人数相加除总人数后再乘即可得;由频数分布直方图可知,大多数学生跳绳次数在范围内;因为每组数据包括左端值不包括右端值,所以跳绳次数最多的不是次;由样本可以估计全年级人中跳绳次数在次的大约有(人),进行判断即可得.【详解】A、跳绳次数不少于次的占,选项说法正确,符合题意;B、由频数分布直方图可知,大多数学生跳绳次数在范围内,选项说法错误,不符合题意;C、每组数据包括左端值不包括右端值,故跳绳次数最多的不是次,选项说法错误,不符合题意;D、由样本可以估计全年级人中跳绳次数在次的大约有(人),选项说法错误,不符合题意;故选A.【点睛】本题考查了频数(率)分布直方图,解题的关键是能够根据频数(率)分布直方图所给的信息进行求解.5、A【详解】解:A、共2+8+5+4+1=20人,中位数为10和11的平均数,故中位数为150元,故选项A不正确;B、共20人,样本容量为20,故选项B正确;C、极差为500﹣50=450元,故选项C正确;D、该企业员工最大捐款金额是500元,故选项D正确.故选:A .【点睛】本题考查脂肪性获取信息,中位数,样本容量,极差,掌握相关概念是解题关键.6、B【分析】根据众数、中位数、平均数及方差的定义逐一计算可得答案.【详解】解:这组数据中8出现次数最多,即众数为8;其中位数是第5、6个数据的平均数,故其中位数为;平均数为,方差为,故选:B.【点睛】本题主要考查方差等知识,解题的关键是掌握众数、中位数、平均数及方差的计算方法.7、C【分析】根据极差的定义,即一组数据中最大数与最小数之差计算即可;【详解】极差是;故选C.【点睛】本题主要考查了极差的计算,准确计算是解题的关键.8、B【分析】根据众数、中位数、平均数及方差的意义知,只要知道了中位数即可知道自己能否进入前5名.【详解】众数表示一组数据中出现次数最多的数,知道众数无法知道自己能否进入前5名;平均数表示的是一组数据的平均水平,方差反映的是一组数据的波动程度,它们都不能知道自己能否进入前5名,只有中位数,才能知道自己能否进入前5名,9名学生中,成绩按高低排列第5位学生的成绩是中位数,若该学生的成绩等于或高于中位数,则进入前5名,否则没有.故选:B【点睛】本题考查了众数、中位数、平均数及方差这四个统计量,前三个反映的是数据的平均水平,后一个反映的是数据的波动程度,理解这四个概念是关键.9、D【分析】由平均数,中位数,众数,方差的定义逐项判断即可.【详解】A.第一组数据平均数为,第二组数据平均数为,有改变,故该选项不符合题意.B.由于不知道各数据具体数值,故无法比较中位数是否变化,故该选项不符合题意.C.由于不知道各数据具体数值,故无法比较众数是否变化,故该选项不符合题意.D.由第二组数据是把第一组数据都加1得到的一组新数据,平均数与差的平方的平均数没有改变,波动没变,所以方差不变,故该选项符合题意.故选:D.【点睛】本题考查平均数,中位数,众数,方差的定义.掌握方差是用来衡量一组数据波动大小的量,数据的波动情况不变,方差不会变是解答本题的关键.10、A【分析】分别计算出原数据和新数据的平均数和方差即可得.【详解】解:原数据的平均数为=192.8,
则原数据的方差为[(189-192.8)2+(191-192.8)2+(193-192.8)2+(195-192.8)2+(196-192.8)2]=4.512,
新数据的平均数为=192,
则新数据的方差为[(189-192)2+(191-192)2+(193-192)2+(195-192)2+(192-192)2]=4,
所以平均数变小,方差变小,
故选:A.【点睛】本题主要考查了方差和平均数,解题的关键是掌握方差的计算公式.二、填空题1、1.2【分析】首先求出平均数,然后根据方差的计算法则求出方差.【详解】解:平均数,
数据的方差 ,
故答案为 :1.2.【点睛】本题主要考查了求方差,解题的关键在于能够熟练掌握求方差的方法.2、50 0.16 【分析】根据总数等于频数除以总数,频率等于频数除以总数求解即可.【详解】依题意(人)故答案为:【点睛】本题考查了频率与频数,理解频率,频数,总数之间的关系是解题的关键.频率表示每个对象出现的次数与总次数的比值.3、甲【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】解:∵甲的平均数比乙的平均数大,
甲的方差小于乙的方差,
∴最合适的运动员是甲.
故答案为:甲.【点睛】此题考查了平均数和方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.4、49【分析】根据平均数及方差知识,直接计算即可.【详解】∵数据,,,,的平均数是2,,即,,,,,的平均数为:,∵数据,,,,的方差是5,,即,,,,,,的方差为:,,,,,平均数和方差的和为,故答案为:49.【点睛】本题是对平均数及方差知识的考查,熟练掌握平均数及方差计算是解决本题的关键.5、甲的平均成绩高,且甲的成绩较为稳定【分析】因为甲的平均数大于乙的平均数,再根据方差的意义可作出判断.【详解】∵=84, =83.2,=13.2, =26.36,∴ ,,
∴甲的平均成绩高,且甲的成绩较为稳定;
故答案为:甲的平均成绩高,且甲的成绩较为稳定.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.三、解答题1、(1)抽样测试的学生人数为40人;(2)条形统计图见详解;(3)估计不及格人数有700人【分析】(1)用B级人数除以B级人数占的百分比即可;(2)用(1)中求得的数据乘以即可求出C级人数,然后补全统计图即可;(3)用总人数乘以D级人数的比例即可.【详解】解:(1)(人),∴本次抽样测试的学生人数是40人;(2)(人),∴抽样测试中为C级的人数是14人,补全条形统计图,如图所示;(3)(人),∴估计不及格的人数有700人.【点睛】题目主要考查扇形统计图和条形统计图的综合,求样本总量,画条形统计图,用样本估计总体等,理解题意,数量掌握计算方法是解题关键.2、(1)C项错误图书数应为12,理由见解析;(2)该校有3000名学生,估计全校共1200学生阅读量为B类;(3)D类学生在扇形统计图中的圆心角为.【分析】(1)依次计算每一项正确的数量,即可判断条形统计图的错误;(2)利用样本估计总体的思想解决问题即可;(3)用360°乘以“D”类人数所占比例即可;.【详解】解:(1)C项错误,学生数应为12,理由如下:A类学生数是:,B类学生数是:,C类学生数是:,D类学生数是:,所以,C项错误,学生数应为12.(2)该校有3000名学生,估计学生阅读量为B类人数:(人).所以,该校有3000名学生,估计全校共1200学生阅读量为B类.(3)D类学生在扇形统计图中的圆心角:.所以,D类学生在扇形统计图中的圆心角为.【点睛】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.3、(1)120人;(2)54;(3)1560人【分析】(1)用A组的频数除以它上的百分比得到调查的总人数;
(2)用调查的总人数分别减去A组、B组、D组的频数得到a的值;
(3)用2400乘以样本中C、D两组的频率之和可估计该校2400名学生中每天体育锻炼时间不少于1小时的学生人数.【详解】解:(1)由统计表可知,A级学生数是12人,由扇形图可知,A级学生所占的百分比是10%,则本次被调查的学生数为:12÷10%=120人;(2)a=120﹣12﹣30﹣24=54;(3)2400×[1﹣(10%+25%)]=1560,所以估计该校2400名学生中每天体育锻炼时间不少于1小时的学生人数为1560人.【点睛】本题考查了用样本估计总体:用样本的数字特征估计总体的数字特征(主要数据有众数、中位数、平均数、标准差与方差 ).一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.4、(1)T甲=2,T乙=1.4,乙组数据更稳定;(2)=6,=3,乙组数据更稳定【分析】(1)先求出甲乙两组的平均数,再利用平均差公式求出甲乙两组的平均差,再比较大小即可;(2)根据方差公式求甲乙两组的方差,再比较大小即可.【详解】解:(1)∵,∴…,∵,∴…,∴,∴乙组数据更稳定;(2)∵,,,∴乙组数据更稳定.【点睛】本题考查平均数,新定义平均差,方差,掌握平均数,新定义平均差,方差是解题关键.5、(1)25,6,8(2)折线(3)1120人【分析】(1)由题意可知随机抽取样本容量为25,查取学生竞赛成绩的人数即为的值,的人数即为的值.(2)折线统计图可以反映数据变化.(3)等级的频率为,进而估计名同学成绩为等级的学生人数.(1)解:由题意可知样本容量为25, m=6, n=8故答案为:25,6,8.(2)解:折线统计图可以反映数据变化故答案为:折线.(3)解:∵等级的频率为∴∴该校2000名同学中活动后的竞赛成绩为等级的学生有人.【点睛】本题考查了数据统计.解题的关键在于正确查取各成绩区间学生个数.
相关试卷
这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试课后练习题,共21页。试卷主要包含了下列说法中正确的是.等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试课时训练,共19页。试卷主要包含了一组数据等内容,欢迎下载使用。
这是一份2021学年第十七章 方差与频数分布综合与测试单元测试当堂检测题,共20页。试卷主要包含了一组数据a-1等内容,欢迎下载使用。