2021学年第七章 观察、猜想与证明综合与测试课时训练
展开
这是一份2021学年第七章 观察、猜想与证明综合与测试课时训练,共20页。试卷主要包含了下列说法中正确的个数是等内容,欢迎下载使用。
京改版七年级数学下册第七章观察、猜想与证明章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,下列条件能判断直线l1//l2的有( )①;②;③;④;⑤A.1个 B.2个 C.3个 D.4个2、已知,则的余角的补角是( )A. B. C. D.3、下列各图中,∠1与∠2是对顶角的是( )A. B.C. D.4、如图,一辆快艇从P处出发向正北航行到A处时向左转50°航行到B处,再向右转80°继续航行,此时航行方向为( )
A.西偏北50° B.北偏西50° C.东偏北30° D.北偏东30°5、已知∠A=37°,则∠A的补角等于( )A.53° B.37° C.63° D.143°6、下列说法中正确的个数是( )(1)在同一平面内,a、b、c是直线,a∥b,b∥c,则a∥c(2)在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a⊥c(3)在同一平面内,a、b、c是直线,a∥b,a⊥c,则b⊥c(4)在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c.A.1 B.2 C.3 D.47、一学员在广场上练习驾驶汽车,两次拐弯后行驶的方向与原来的方向相同,这两次拐弯的角度可能是( ) .A.第一次向左拐30°,第二次向右拐30°.B.第一次向右拐50°,第二次向左拐130°.C.第一次向左拐50°,第二次向左拐130°.D.第一次向左拐50°,第二次向右拐130°.8、如图,直线AB,CD相交于点O,AOC30,OE⊥AB,OF是AOD的角平分线.若射线OE,OF分C别以18/s,3/s的速度同时绕点O顺时针转动,当射线OE,OF重合时,至少需要的时间是( )A.8s B.11s C.s D.13s9、一个角的余角比这个角的补角的一半小40°,则这个角为( )A.50° B.60° C.70° D.80°10、下列语句中,错误的个数是( )①直线AB和直线BA是两条直线;②如果,那么点C是线段AB的中点;③两点之间,线段最短;④一个角的余角比这个角的补角小.A.1个 B.2个 C.3个 D.4个第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若∠α=23°30′,则∠α的补角的度数为 _____.2、若一个角的余角为35°,则它的补角度数为 ______.3、如图,已知,且∠1=48°,则∠2=_____,∠3=_____,∠4=_____.4、如图所示,过点P画直线a的平行线b的作法的依据是___________.5、如图,直线l分别与直线AB、CD相交于点E、F,EG平分∠BEF交直线CD于点G,若∠1=∠BEF=68°,则∠EGF的度数为_______.三、解答题(5小题,每小题10分,共计50分)1、如图1,已知∠AOB=120°,OC是∠AOB内的一条射线,且∠AOC=∠AOB,OD平分∠AOC.(1)分别求∠AOB的补角和∠AOC的度数;(2)现有射线OE,使得∠BOE=30°.①小明在图2中补全了射线OE,根据小明所补的图,求∠DOE的度数;②小静说:“我觉得小明所想的情况并不完整,∠DOE还有其他的结果.”请你判断小静说的是否正确?若正确,请求出∠DOE的其他结果;若不正确,请说明理由.2、完成下列证明:已知,,垂足分别为、,且,求证.证明:,(已知),( )( )( )又(已知)( )( )3、推理填空:如图,直线,并且被直线所截,交和于点,平分,平分,使说明.解:∵,∴( )∵平分,平分.∴, ( )∵∴( )∵∴( )4、如图,已知∠AOB=90°,∠COD=90°,OE为∠BOD的平分线,∠BOE=17°,求∠AOC的度数.5、如图,,OB是的角平分线.(1)当时,求的度数.(2)的余角是多少度? ---------参考答案-----------一、单选题1、D【分析】根据平行线的判定定理进行依次判断即可.【详解】①∵∠1,∠3互为内错角,∠1=∠3,∴; ②∵∠2,∠4互为同旁内角,∠2+∠4=180° ,∴;③∠4,∠5互为同位角,∠4=∠5,∴; ④∠2,∠3没有位置关系,故不能证明 ,⑤,,∴∠1=∠3,∴,故选D.【点睛】此题主要考查平行线的判定,解题的关键是熟知平行线的判定定理.2、A【分析】根据余角和补角定义解答.【详解】解:的余角的补角是,故选:A .【点睛】此题考查余角和补角的定义:和为90度的两个角互为余角,和为180度的两个角是互为补角.3、B【分析】根据对顶角的定义作出判断即可.【详解】解:根据对顶角的定义可知:只有B选项的是对顶角,其它都不是.故选:B.【点睛】本题考查对顶角的定义,解题关键是明确两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.4、D【分析】由,证明,再利用角的和差求解 从而可得答案.【详解】解:如图,标注字母, ,
∴, 此时的航行方向为北偏东30°, 故选:D.【点睛】本题考查的是平行线的性质,角的和差运算,掌握“两直线平行,同位角相等”是解本题的关键.5、D【分析】根据补角的定义:如果两个角的度数和为180度,那么这两个角互为补角,进行求解即可.【详解】解:∵∠A=37°,∴∠A的补角的度数为180°-∠A=143°,故选D.【点睛】本题主要考查了求一个角的补角,熟知补角的定义是解题的关键.6、C【分析】根据平行线的性质分析判断即可;【详解】在同一平面内,a、b、c是直线,a∥b,b∥c,则a∥c,故(1)正确;在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c,故(2)错误;在同一平面内,a、b、c是直线,a∥b,a⊥c,则b⊥c,故(3)正确;在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c.故(4)正确;综上所述,正确的是(1)(3)(4);故选C.【点睛】本题主要考查了平行线的性质,准确分析判断是解题的关键.7、A【分析】根据题意分析判断即可;【详解】由第一次向左拐30°,第二次向右拐30°可得转完两次后相当于在原方向上转过了,和原来方向相同,故A正确;第一次向右拐50°,第二次向左拐130°可得转完两次后相当于在原方向上左拐,故B错误;第一次向左拐50°,第二次向左拐130°可得转完两次后相当于在原方向上右拐,故C错误;第一次向左拐50°,第二次向右拐130°可得转完两次后相当于在原方向上右拐,故D错误;综上所述,符合条件的是A.故选:A.【点睛】本题主要考查了平行的判定与性质,准确分析判断是解题的关键.8、D【分析】设首次重合需要的时间为t秒,则OE比OF要多旋转120゜+75゜,由此可得方程,解方程即可.【详解】∵∠BOD=∠AOC=30゜,OE⊥AB∴∠EOD=∠EOB+∠BOD=90゜+30゜=120゜,∠AOD=180゜ - ∠AOC=150゜∵OF平分∠AOD∴∴∠EOD+∠DOF=120゜+75゜设OE、OF首次重合需要的时间为t秒,则由题意得:18t−3t=120+75解得:t=13即射线OE,OF重合时,至少需要的时间是13秒故选:D【点睛】本题考查了角平分线的性质,补角的含义,垂直的定义,角的和差运算,运用了方程思想来解决,本题的实质是行程问题中的追及问题.9、D【分析】设这个角为x,根据互为余角的两个角的和等于90°,互为补角的两个角的和等于180°,表示出它的余角和补角,列式解方程即可.【详解】设这个角为x,则它的余角为(90°-x),补角为(180°-x),依题意得解得x=80°故选D.【点睛】本题考查了余角和补角的概念,是基础题,熟记概念并列出方程是解决本题的关键.10、B【分析】根据直线的定义、线段中点的定义、线段的性质、余角与补角的定义分别判断.【详解】解:①直线AB和直线BA是同一条直线,故该项符合题意;②如果,那么点C不一定是线段AB的中点,故该项符合题意;③两点之间,线段最短,故该项不符合题意;④一个角的余角比这个角的补角小,故该项不符合题意,故选:B.【点睛】此题考查了直线的定义、线段中点的定义、线段的性质、余角与补角的定义,属于基础定义题型.二、填空题1、156°30′【分析】如果两个角的和是180°,则这两个角互为补角.由此定义进行求解即可.【详解】解:∵∠α=23°30′,∴∠α的补角=180°﹣∠α=23°30′=156°30',故答案为:156°30'.【点睛】本题考查补角的计算,熟练掌握两个角互补的定义,并能准确计算是解题的关键.2、125°度【分析】若两个角的和为 则这两个角互余,若两个角的和为 则这两个角互补,根据定义直接可得答案.【详解】解: 一个角的余角为35°, 这个角为: 则它的补角度数为: 故答案为:【点睛】本题考查的是余角与补角的计算,掌握“余角与补角的含义”是解本题的关键.3、48° 132° 48° 【分析】根据两直线平行内错角相等可求出∠2,根据两直线平行,同位角相等可求出∠4,同旁内角互补可求出∠3.【详解】解:∵ //,∠1=48°,∴∠2=∠1=48°,∵ //,∠1=48°,∴∠4=∠1=48°,∵ //,∴∠3+∠4=180°∴∠3=180°-∠4=180°-48°=132°故答案为:48°;132°;48°【点睛】此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.4、内错角相等,两直线平行【分析】根据平行线的判定方法解决问题即可.【详解】解:由作图可知,,(内错角相等两直线平行),故答案为:内错角相等,两直线平行.【点睛】本题考查作图,平行线的判定等知识,熟练掌握平行线的判定定理是解题的关键,属于中考常考题型.5、34°【分析】根据角平分线的性质可求出的度数,然后由平行线的判定与性质即可得出的度数.【详解】解:平分, 又 故答案为【点睛】本题主要考查了平行线的判定与性质、角平分线的性质,灵活应用平行线的判定与性质是解题的关键.三、解答题1、(1)80°;(2)①110°;②正确, 50°【解析】【分析】(1)根据补角定义求解即可和已知条件直接求解即可;(2)①根据角平分线的定义求得∠AOD,进而求得∠BOD,根据∠DOE=∠BOD+∠BOE即可求得∠DOE;②根据题意作出图形,进而结合图形可知∠DOE=∠BOD-∠BOE即可求得∠DOE;【详解】解:(1)因为∠AOB=120°,所以∠AOB的补角为180°-∠AOB=60°.因为∠AOC=∠AOB,所以∠AOC=×120°=80°;(2)①因为OD平分∠AOC,∠AOC=80°,所以∠AOD=∠AOC=40°,所以∠BOD=∠AOB-∠AOD=80°,所以∠DOE=∠BOD+∠BOE=110°;②正确;如图,射线OE还可能在∠BOC的内部,所以∠DOE=∠BOD-∠BOE=【点睛】本题考查了求一个角的补角,角平分线的定义,角度的计算,数形结合是解题的关键.2、见详解【解析】【分析】根据垂直的定义及平行线的性质与判定可直接进行求解.【详解】证明:,(已知),(垂直的定义)(同位角相等,两直线平行)(两直线平行,同位角相等)又(已知)(等量代换)(内错角相等,两直线平行).【点睛】本题主要考查垂直的定义及平行线的性质与判定,熟练掌握垂直的定义及平行线的性质与判定是解题的关键.3、两直线平行,同位角相等;∠CNE,角平分线的定义;等量代换;同位角相等,两直线平行.【解析】【分析】利用平行线的性质定理和判定定理解答即可.【详解】解:∵AB∥CD,∴∠AME=∠CNE.(两直线平行,同位角相等),∵MP平分∠AME,NQ平分∠CNE,∴∠1=∠AME,=∠CNE.( 角平分线的定义),∵∠AME=∠CNE,∴∠1=∠2.(等量代换),∵∠1=∠2,∴MP∥NQ.(同位角相等,两直线平行).故答案为:两直线平行,同位角相等;∠CNE,角平分线的定义;等量代换;同位角相等,两直线平行.【点睛】此题考查的是平行线的判定及性质,掌握平行线的性质定理和判定定理是解决此题的关键.4、146°【解析】【分析】由OE是∠BOD的平分线,∠BOE=17°,可知∠BOD;又由∠COD=90°,∠AOB=90°,所以根据圆周角360°可计算∠AOC.【详解】解:∵OE为∠BOD的平分线,∴∠BOD=2∠BOE,∵∠BOE=17°,∴∠BOD=34°.又∵∠AOB=∠COD=90°,∠AOB+∠COD+∠AOC+∠BOD=360°,∴∠AOC =360°-∠AOB-∠COD-∠BOD=360°-90°-90°-34°=146°.【点睛】本题主要考查角的比较与运算,涉及到余角、圆周角、角平分线的性质等知识点,找到相应等量关系是解此题的关键.5、(1)的度数.(2)的余角是.【解析】【分析】(1)利用角平分线的性质,求得的度数,然后利用,即可求解的度数.(2)利用题(1)中的度数以及余角的概念,直接求解即可.【详解】(1)解: OB是的角平分线.,,,,.(2)解:由(1)得,故的余角.【点睛】本题主要是考查了角平分线以及余角的相关概念及性质和角的计算,熟练利用角平分线的性质求解角度,找到所要求的角与已知角的关系,是解决该题的关键.
相关试卷
这是一份初中北京课改版第七章 观察、猜想与证明综合与测试一课一练,共22页。试卷主要包含了下列命题是真命题的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后测评,共21页。试卷主要包含了如图,直线AB∥CD,直线AB,下列命题是假命题的有,如图,直线AB等内容,欢迎下载使用。
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试课堂检测,共23页。试卷主要包含了如图,直线AB,若的补角是125°,则的余角是等内容,欢迎下载使用。