数学第七章 观察、猜想与证明综合与测试测试题
展开
这是一份数学第七章 观察、猜想与证明综合与测试测试题,共25页。试卷主要包含了如图,直线AB∥CD,直线AB,下列说法中正确的是等内容,欢迎下载使用。
京改版七年级数学下册第七章观察、猜想与证明章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,若要使与平行,则绕点至少旋转的度数是( )A. B. C. D.2、一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠A=60°,则∠DBC的度数为( )A.45° B.25° C.15° D.20°3、如果两个角的两边两两互相平行,且一个角的等于另一个角的,则这两个角的度数分别是( )A.48°,72° B.72°,108°C.48°,72°或72°,108° D.80°,120°4、已知∠1与∠2互为补角,且∠1>∠2,则∠2的余角是( )A.∠1 B. C.∠2 D.5、如图,直线AB∥CD,直线AB、CD被直线EF所截,交点分别为点M、点N,若∠AME=130°,则∠DNM的度数为( )A.30° B.40° C.50° D.60°6、如图,木工用图中的角尺画平行线的依据是( )A.垂直于同一条直线的两条直线平行B.平行于同一条直线的两条直线平行C.同位角相等,两直线平行D.经过直线外一点,有且只有一条直线与这条直线平行7、下列说法中正确的是( )A.锐角的2倍是钝角 B.两点之间的所有连线中,线段最短C.相等的角是对顶角 D.若AC=BC,则点C是线段AB的中点8、如图,直线AB,CD相交于点O,AOC30,OE⊥AB,OF是AOD的角平分线.若射线OE,OF分C别以18/s,3/s的速度同时绕点O顺时针转动,当射线OE,OF重合时,至少需要的时间是( )A.8s B.11s C.s D.13s9、如图,有A,B,C三个地点,且∠ABC=90°,B地在A地的北偏东43°方向,那么C地在B地的( )方向.
A.南偏东47° B.南偏西43° C.北偏东43° D.北偏西47°10、如图,一条公路经过两次转弯后又回到原来的方向,如果第一次的拐角为150°,则第二次的拐角为( )A.40° B.50° C.140° D.150°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,A、B、C为直线l上的点,D为直线l外一点,若,则的度数为______.2、填写推理理由:如图,CD∥EF,∠1=∠2.求证:∠3=∠ACB.证明:∵CD∥EF,∴∠DCB=∠2________.∵∠1=∠2,∴∠DCB=∠1________.∴GD∥CB________.∴∠3=∠ACB________.3、已知,则的余角是________.4、如图,AB与CD相交于点O,OE是∠AOC的平分线,且OC恰好平分∠EOB,则∠AOD=_____度. 5、填写推理理由 如图:EF∥AD,∠1=∠2,∠BAC=70°,把求∠AGD的过程填写完整.证明:∵EF∥AD∴∠2=________(______________)又∵∠1=∠2∴∠1=∠3________∴AB∥________(____________) ∴∠BAC+________=180°(___________)又∵∠BAC=70° ∴∠AGD=________三、解答题(5小题,每小题10分,共计50分)1、如图①,直线AB与直线CD相交于点O,, 过点O作射线.(1)若射线OF平分, 求的度数;(2)若将图①中的直线绕点O逆时针旋转至图②, ,当射线平分时,射线C是否平分,请说明理由;(3)若, , 将图①中的直线绕点O按每秒5° 的速度逆时针旋转 度(),设旋转的时间为t秒,当时,求t的值.2、已知∠α=76°42',∠β=41°41'.求:(1)∠β的余角;(2)∠α与∠β的2倍的和.3、如图,已知∠1+∠AFE=180°,∠A=∠2,求证:∠A=∠C+∠AFC 证明:∵ ∠1+∠AFE=180°∴ CD∥EF( , )∵∠A=∠2 ∴( ) ( , )∴ AB∥CD∥EF( , )∴ ∠A= ,∠C= ,( , )∵ ∠AFE =∠EFC+∠AFC ,∴ = .4、已知:如图①,AB∥CD,点F在直线AB、CD之间,点E在直线AB上,点G在直线CD上,∠EFG=90°.(1)如图①,若∠BEF=130°,则∠FGC= 度;(2)小明同学发现:如图②,无论∠BEF度数如何变化,∠FEB﹣∠FGC的值始终为定值,并给出了一种证明该发现的辅助线作法:过点E作EM∥FG,交CD于点M.请你根据小明同学提供的辅助线方法,补全下面的证明过程;(3)拓展应用:如图③,如果把题干中的“∠EFG=90°”条件改为“∠EFG=110°”,其它条件不变,则∠FEB﹣∠FGC= 度.解:如图②,过点E作EM∥FG,交CD于点M.∵AB∥CD(已知)∴∠BEM=∠EMC( )又∵EM∥FG∴∠FGC=∠EMC( )∠EFG+∠FEM=180°( )即∠FGC=( )(等量代换)∴∠FEB﹣∠FGC=∠FEB﹣∠BEM=( )又∵∠EFG=90°∴∠FEM=90°∴∠FEB﹣∠FGC= 即:无论∠BEF度数如何变化,∠FEB﹣∠FGC的值始终为定值.5、如图,∠AGB=∠EHF,∠C=∠D.(1)求证:BD∥CE;(2)求证:∠A=∠F. ---------参考答案-----------一、单选题1、A【分析】根据“两直线平行,内错角相等”进行计算.【详解】解:如图,∵l1∥l2,∴∠AOB=∠OBC=42°,∴80°-42°=38°,即l1绕点O至少旋转38度才能与l2平行.故选:A.【点睛】考查了旋转的性质和平行线的性质,根据平行线的性质得到∠AOB=∠OBC=42°是解题的关键,难度不大.2、C【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.【详解】解:由题意可得:∠EDF=45°,∠ABC=30°,∵AB∥CF,∴∠ABD=∠EDF=45°,∴∠DBC=45°-30°=15°.故选:C.【点睛】此题主要考查了平行线的性质,根据题意得出∠ABD的度数是解题关键.3、B【分析】根据题意可得这两个角互补,设其中一个角为x,则另一个角为,由两个角之间的数量关系列出一元一次方程,求解即可得.【详解】解:∵两个角的两边两两互相平行,∴这两个角可能相等或者两个角互补,∵一个角的等于另一个角的,∴这两个角互补,设其中一个角为x,则另一个角为,根据题意可得:,解得:,,故选:B.【点睛】题目主要考查平行线的性质、角的数量关系、一元一次方程等,理解题意,列出方程是解题关键.4、B【分析】由已知可得∠2<90°,设∠2的余角是∠3,则∠3=90°﹣∠2,∠3=∠1﹣90°,可求∠3=,∠3即为所求.【详解】解:∵∠1与∠2互为补角,∴∠1+∠2=180°,∵∠1>∠2,∴∠2<90°,设∠2的余角是∠3,∴∠3=90°﹣∠2,∴∠3=∠1﹣90°,∴∠1﹣∠2=2∠3,∴∠3=,∴∠2的余角为,故选B.【点睛】本题主要考查了与余角补角相关的计算,解题的关键在于能够熟练掌握余角和补角的定义.5、C【分析】由对顶角得到∠BMN=130°,然后利用平行线的性质,即可得到答案.【详解】解:由题意,∵∠BMN与∠AME是对顶角,∴∠BMN=∠AME=130°,∵AB∥CD,∴∠BMN+∠DNM=180°,∴∠DNM=50°;故选:C.【点睛】本题考查了平行线的性质,对顶角相等,解题的关键是掌握所学的知识,正确得到∠BMN=130°.6、C【分析】由于角尺是一个直角,木工画线实质是在画一系列的直角,且这些直角有一边在同一直线上,根据平行线的判定即可作出判断.【详解】由于木工画一条线实际上是在画一个直角,且这些直角的一边在同一直线上,且这些直角是同位角相等,因而这些直线平行.故选:C【点睛】本题是平行线判定在实质中的应用,关键能够把实际问题转化为数学问题.7、B【分析】根据锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,即可得到正确结论.【详解】解:A.锐角的2倍不一定是钝角,例如:锐角20°的2倍是40°是锐角,故不符合题意;B.两点之间的所有连线中,线段最短,正确;C.相等的角不一定是对顶角,故不符合题意;D.当点C在线段AB上,若AC=BC,则点C是线段AB的中点,故不符合题意;故选:B.【点睛】本题考查了锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,解题的关键是:熟练掌握这些性质.8、D【分析】设首次重合需要的时间为t秒,则OE比OF要多旋转120゜+75゜,由此可得方程,解方程即可.【详解】∵∠BOD=∠AOC=30゜,OE⊥AB∴∠EOD=∠EOB+∠BOD=90゜+30゜=120゜,∠AOD=180゜ - ∠AOC=150゜∵OF平分∠AOD∴∴∠EOD+∠DOF=120゜+75゜设OE、OF首次重合需要的时间为t秒,则由题意得:18t−3t=120+75解得:t=13即射线OE,OF重合时,至少需要的时间是13秒故选:D【点睛】本题考查了角平分线的性质,补角的含义,垂直的定义,角的和差运算,运用了方程思想来解决,本题的实质是行程问题中的追及问题.9、D【分析】根据方向角的概念,和平行线的性质求解.【详解】解:如图:
∵AF∥DE,∴∠ABE=∠FAB=43°,∵AB⊥BC,∴∠ABC=90°,∴∠CBD=180°﹣90°﹣43°=47°,∴C地在B地的北偏西47°的方向上.故选:D.【点睛】本题主要考查了方位角,平行线的性质,正确的识别图形是解题的关键.10、D【分析】由于拐弯前、后的两条路平行,可考虑用平行线的性质解答.【详解】解:∵拐弯前、后的两条路平行,∴∠B=∠C=150°(两直线平行,内错角相等).
故选:D.【点睛】本题考查平行线的性质,解答此题的关键是将实际问题转化为几何问题,利用平行线的性质求解.二、填空题1、60°度【分析】由邻补角的定义,结合,可得答案.【详解】解: 故答案为:【点睛】本题考查的是邻补角的定义,掌握“互为邻补角的两个角的和为”是解本题的关键.2、两直线平行,同位角相等 等量代换 内错角相等,两直线平行 两直线平行,同位角相等 【分析】根据平行线的性质得出,求出,根据平行线的判定得出,利用平行线的性质即可得出.【详解】证明:∵,∴(两直线平行,同位角相等)∵,∴.(等量代换)∴(内错角相等,两直线平行).∴(两直线平行,同位角相等).故答案为:①两直线平行,同位角相等;②等量代换;③内错角相等,两直线平行;④两直线平行,同位角相等.【点睛】题目主要考查平行线的判定定理及性质,理解题意,结合图形,综合运用判定的性质定理是解题关键.3、【分析】根据互余两角的和等于90°,即可求解.【详解】解:∵,∴的余角是 .故答案为:【点睛】本题主要考查了余角的性质,熟练掌握互余两角的和等于90°是解题的关键.4、60【分析】根据角平分线的定义得出∠AOE=∠COE,∠COE=∠BOC,求出∠AOE=∠COE=∠BOC,根据∠AOE+∠COE+∠BOC=180°,求出∠BOC,再根据对顶角相等求出答案即可.【详解】解:∵OE是∠AOC的平分线,OC恰好平分∠EOB, ∴∠AOE=∠COE,∠COE=∠BOC,∴∠AOE=∠COE=∠BOC,∵∠AOE+∠COE+∠BOC=180°,∴∠BOC=60°,∴∠AOD=∠BOC=60°,故答案为:60.【点睛】本题考查了邻补角、对顶角,角平分线的性质知识点,做题的关键是掌握邻补角互补,角的平分线分成的两个角相等,对顶角相等.5、∠3 两直线平行,同位角相等 等量代换 DG 内错角相等,两直线平行 ∠AGD 两直线平行,同旁内角互补 110° 【分析】根据平行线的判定与性质,求解即可.【详解】∵EF∥AD, ∴∠2=∠3,(两直线平行,同位角相等)又∵∠1=∠2,∴∠1=∠3,(等量代换)∴AB∥DG.(内错角相等,两直线平行)∴∠BAC+∠AGD=180°.(两直线平行,同旁内角互补)又∵∠BAC=70°,∴∠AGD=110°.故答案是:∠3,两直线平行,同位角相等,等量代换,DG,内错角相等,两直线平行,∠AGD,两直线平行,同旁内角互补,110°【点睛】此题考查了平行线的判定与性质,解题的关键是掌握平行线的判定方法与性质.三、解答题1、(1);(2)平分,理由见解析;(3)秒或秒【解析】【分析】(1)由补角的定义得出∠AOF的度数,由角平分线的定义得出∠FOC的度数,根据余角定义得出的度数;(2)由得出,由角平分线的定义得出,得即可得出结论;(3)由余角和补角的定义求得、的度数,然后分当s时,当s时,当s时分别讨论得出结果.【详解】解:(1), , , (2) 平分,理由如下:, .OE平分, 即射线OC平分.(3)∵且,∴又∵,∴,∴①当s时直线绕点O按每秒5°的速度逆时针旋转解得②当s时直线绕点O按每秒5°的速度逆时针旋转此时无解③当s时直线绕点O按每秒5°的速度逆时针旋转解得35综上所述,当时, 秒或秒.【点睛】本题考查了补角和余角的定义,角平分线的定义,一元一次方程的运用,结合题意学会分类讨论的思想避免漏算答案.2、(1)48°19';(2)160°4'【解析】【分析】(1)根据互为余角的两个角的和为90度可得的余角,将代入计算即可;(2)将,代入,然后计算即可.【详解】解:(1),的余角;(2),,.【点睛】本题考查了余角与补角,以及度分秒的换算,解题的关键是掌握如果两个角的和等于(直角),就说这两个角互为余角.即其中一个角是另一个角的余角;度、分、秒是常用的角的度量单位.1度分,即,1分秒,即.3、同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC .【解析】【分析】根据同旁内角互补,两直线平行可得 CD∥EF,根据∠A=∠2利用同位角相等,两直线平行,AB∥CD,根据平行同一直线的两条直线平行可得AB∥CD∥EF根据平行线的性质可得∠A=∠AFE ,∠C=∠EFC,根据角的和可得 ∠AFE =∠EFC+∠AFC 即可.【详解】证明:∵ ∠1+∠AFE=180°∴ CD∥EF(同旁内角互补,两直线平行),∵∠A=∠2 ,∴( AB∥CD ) (同位角相等,两直线平行),∴ AB∥CD∥EF(两条直线都与第三条直线平行,则这两直线也互相平行)∴ ∠A= ∠AFE ,∠C= ∠EFC,(两直线平行,内错角相等)∵ ∠AFE =∠EFC+∠AFC ,∴ ∠A = ∠C+∠AFC .故答案为同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC .【点睛】本题考查平行线的性质与判定,角的和差,掌握平行线的性质与判定是解题关键.4、(1)40°;(2)见解析;(3)70°【解析】【分析】(1)过点F作FN∥AB,由∠FEB=150°,可计算出∠EFN的度数,由∠EFG=90°,可计算出∠NFG的度数,由平行线的性质即可得出答案;(2)根据题目补充理由和相关结论即可;(3)类似(2)中的方法求解即可.【详解】解:(1)过点F作FN∥AB,∵FN∥AB,∠FEB=130°,∴∠EFN+∠FEB=180°,∴∠EFN=180°﹣∠FEB=180°﹣130°=50°,∵∠EFG=90°,∴∠NFG=∠EFG﹣∠EFN=90°﹣50°=40°,∵AB∥CD,∴FN∥CD,∴∠FGC=∠NFG=40°.故答案为:40°; (2)如图②,过点E作EM∥FG,交CD于点M.∵AB∥CD(已知)∴∠BEM=∠EMC(两直线平行,内错角相等)又∵EM∥FG∴∠FGC=∠EMC(两直线平行,同位角相等)∠EFG+∠FEM=180°(两直线平行,同旁内角互补)即∠FGC=(∠BEM)(等量代换)∴∠FEB﹣∠FGC=∠FEB﹣∠BEM=(∠FEM)又∵∠EFG=90°∴∠FEM=90°∴∠FEB﹣∠FGC=90°故答案为:两直线平行,内错角相等,两直线平行,同位角相等,两直线平行,同旁内角互补,∠BEM,∠FEM,90°(3)过点E作EH∥FG,交CD于点H.∵AB∥CD∴∠BEH=∠EHC又∵EM∥FG∴∠FGC=∠EHC∠EFG+∠FEH=180°即∠FGC=∠BEH∴∠FEB﹣∠FGC=∠FEB﹣∠BEH=∠FEH又∵∠EFG=110°∴∠FEH=70°∴∠FEB﹣∠FGC=70°故答案为:70°. 【点睛】本题主要考查了平行线的判定与性质,熟练掌握平行线的判定与性质进行求解是解决本题的关键.5、(1)证明见解析;(2)证明见解析.【解析】【分析】(1)由∠AGB=∠1,∠AGB=∠EHF,可得∠1=∠EHF,则BD∥CE;(2)由BD∥CE,可得∠D=∠2,则∠2=∠C,推出AC∥DF,则∠A=∠F.【详解】证明:(1)∵∠AGB=∠1,∠AGB=∠EHF,∴∠1=∠EHF,∴BD∥CE;(2)∵BD∥CE,∴∠D=∠2,∵∠D=∠C,∴∠2=∠C,∴AC∥DF,∴∠A=∠F.【点睛】本题主要考查了平行线的性质与判定,对顶角相等,熟练掌握平行线的性质与判定条件是解题的关键.
相关试卷
这是一份2021学年第七章 观察、猜想与证明综合与测试精练,共23页。试卷主要包含了下列说法中正确的是,如图,直线AB∥CD,直线AB等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试练习题,共21页。试卷主要包含了下列命题是假命题的有,如图等内容,欢迎下载使用。
这是一份2021学年第七章 观察、猜想与证明综合与测试课时训练,共20页。试卷主要包含了下列说法中正确的个数是等内容,欢迎下载使用。