数学九年级下册第24章 圆综合与测试习题
展开
这是一份数学九年级下册第24章 圆综合与测试习题,共30页。
沪科版九年级数学下册第24章圆定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,一个宽为2厘米的刻度尺(刻度单位:厘米).放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是2和8,那么玻璃杯的杯口外沿半径为( )A.5厘米 B.4厘米 C.厘米 D.厘米2、下列叙述正确的有( )个.(1)随着的增大而增大;(2)如果直角三角形斜边的长是斜边上的高的4倍,那么这个三角形两个锐角的度数分别是和;(3)斜边为的直角三角形顶点的轨迹是以中点为圆心,长为直径的圆;(4)三角形三边的垂直平分线的交点到三角形三个顶点的距离相等;(5)以为三边长度的三角形,不是直角三角形.A.0 B.1 C.2 D.33、若的圆心角所对的弧长是,则此弧所在圆的半径为( )A.1 B.2 C.3 D.44、已知圆锥的底面半径为2cm,母线长为3cm,则其侧面积为( )cm.A.3π B.6π C.12π D.18π5、下列图形中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D.6、如图,在中,,,,将绕点顺时针旋转得到,当点的对应点恰好落在边上时,的长为( )A.3 B.4 C.5 D.67、如图,在△ABC中,∠BAC=130°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,则∠BAD的大小是( )A.80° B.70° C.60° D.50°8、如图是一个含有3个正方形的相框,其中∠BCD=∠DEF=90°,AB=2,CD=3,EF=5,将它镶嵌在一个圆形的金属框上,使A,G, H三点刚好在金属框上,则该金属框的半径是( )A. B. C. D.9、如图,AB为的直径,,,劣弧BC的长是劣弧BD长的2倍,则AC的长为( )A. B. C.3 D.10、如图,ABCD是正方形,△CDE绕点C逆时针方向旋转90°后能与△CBF重合,那么△CEF是( )A..等腰三角形 B.等边三角形C..直角三角形 D..等腰直角三角形第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、半径为6cm的扇形的圆心角所对的弧长为cm,这个圆心角______度.2、如图,在矩形中,,,F为中点,P是线段上一点,设,连结并将它绕点P顺时针旋转90°得到线段,连结、,则在点P从点B向点C的运动过程中,有下面四个结论:①当时,;②点E到边的距离为m;③直线一定经过点;④的最小值为.其中结论正确的是______.(填序号即可)3、在平面直角坐标系中,A(-1,0),B(2,0),∠OCB=30°,D为线段BC的中点,线段AD交线段OC于点E,则△AOE面积的最大值为___________4、如图,在⊙O中,弦AB⊥OC于E点,C在圆上,AB=8,CE=2,则⊙O的半径AO=___________.5、如图,将Rt△ABC的斜边AB与量角器的直径恰好重合,B点与零刻度线的一端重合,∠ABC=38°,射线CD绕点C转动,与量角器外沿交于点D,若射线CD将△ABC分割出以BC为边的等腰三角形,则点D在量角器上对应的度数是 ___.三、解答题(5小题,每小题10分,共计50分)1、在所给的的正方形网格中,按下列要求操作:(单位正方形的边长为1)(1)请在第二象限内的格点上找一点,使是以为底的等腰三角形,且腰长是无理数,求点的坐标;(2)画出以点为中心,旋转180°后的,并求的面积.2、在平面直角坐标系xOy中,给出如下定义:若点P在图形M上,点Q在图形N上,称线段PQ长度的最小值为图形M,N的“近距离”,记为d(M,N),特别地,若图形M,N有公共点,规定d(M,N)=0.已知:如图,点A(,0),B(0,).(1)如果⊙O的半径为2,那么d(A,⊙O)= ,d(B,⊙O)= .(2)如果⊙O的半径为r,且d(⊙O,线段AB)=0,求r的取值范围;(3)如果C(m,0)是x轴上的动点,⊙C的半径为1,使d(⊙C,线段AB)<1,直接写出m的取值范围.3、如图,已知AB是⊙O的直径,⊙O过BC的中点D,且.(1)求证:DE是⊙O的切线;(2)若,,求的半径.4、如图,AB为⊙O的弦,OC⊥AB于点M,交⊙O于点C.若⊙O的半径为10,OM:MC=3:2,求AB的长.5、如图,在中,,,将绕着点A顺时针旋转得到,连接BD,连接CE并延长交BD于点F.(1)求的度数;(2)若,且,求DF的长. -参考答案-一、单选题1、D【分析】根据题意先求出弦AC的长,再过点O作OB⊥AC于点B,由垂径定理可得出AB的长,设杯口的半径为r,则OB=r-2,OA=r,在Rt△AOB中根据勾股定理求出r的值即可.【详解】解:∵杯口外沿两个交点处的读数恰好是2和8,∴AC=8-2=6厘米,过点O作OB⊥AC于点B,则AB=AC=×6=3厘米,设杯口的半径为r,则OB=r-2,OA=r,在Rt△AOB中,OA2=OB2+AB2,即r2=(r-2)2+32,解得r=厘米.故选:D.【点睛】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.2、D【分析】根据反比例函数的性质,得当或者时,随着的增大而增大;根据直径所对圆周角为直角的性质,得斜边为的直角三角形顶点的轨迹是以中点为圆心,长为直径的圆;根据垂直平分线的性质,得三角形三边的垂直平分线的交点到三角形三个顶点的距离相等;根据勾股定理逆定理、完全平方公式的性质计算,可判断直角三角形,即可完成求解.【详解】当或者时,随着的增大而增大,故(1)不正确;如果直角三角形斜边的长是斜边上的高的4倍,那么这个三角形两个锐角的度数分别是和;,故(2)正确;∵圆的直径所对的圆周角为直角∴斜边为的直角三角形顶点A的轨迹是以中点为圆心,长为直径的圆,故(3)正确;三角形三边的垂直平分线的交点到三角形三个顶点的距离相等,故(4)正确;∵∴∴以为三边长度的三角形,是直角三角形,故(5)错误;故选:D.【点睛】本题考查了三角形、垂直平分线、反比例函数、圆、勾股定理逆定理的知识;解题的关键是熟练掌握反比例函数、垂直平分线、圆周角、勾股定理逆定理的性质,从而完成求解.3、C【分析】先设半径为r,再根据弧长公式建立方程,解出r即可【详解】设半径为r,则周长为2πr,120°所对应的弧长为解得r=3故选C【点睛】本题考查弧长计算,牢记弧长公式是本题关键.4、B【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【详解】解:它的侧面展开图的面积=×2×2×3=6(cm2).故选:B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.5、C【详解】解:选项A是轴对称图形,不是中心对称图形,故A不符合题意;选项B不是轴对称图形,是中心对称图形,故B不符合题意;选项C既是轴对称图形,也是中心对称图形,故C符合题意;选项D是轴对称图形,不是中心对称图形,故D不符合题意;故选C【点睛】本题考查的是轴对称图形的识别,中心对称图形的识别,掌握“轴对称图形与中心对称图形的定义”是解本题的关键,轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能够完全重合;中心对称图形:把一个图形绕某点旋转后能与自身重合.6、A【分析】先根据旋转的性质可得,再根据等边三角形的判定与性质可得,然后根据线段的和差即可得.【详解】由旋转的性质得:,,是等边三角形,,,.故选:A.【点睛】本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键.7、A【分析】根据三角形旋转得出,,根据点A,D,E在同一条直线上利用邻补角关系求出,根据等腰三角形的性质即可得到∠DAC=50°,由此即可求解.【详解】证明:∵绕点C逆时针旋转得到,∴,,∴∠ADC=∠DAC,∵点A,D,E在同一条直线上,∴,∴∠DAC=50°,∴∠BAD=∠BAC-∠DAC=80°故选A.【点睛】本题考查三角形旋转性质,邻补角的性质,等腰三角形的性质与判定,解题的关键在于熟练掌握旋转的性质.8、A【分析】如图,记过A,G, H三点的圆为则是,的垂直平分线的交点, 记的交点为 的交点为 延长交于为的垂直平分线,结合正方形的性质可得:再设利用勾股定理建立方程,再解方程即可得到答案.【详解】解:如图,记过A,G, H三点的圆为则是,的垂直平分线的交点, 记的交点为 的交点为 延长交于为的垂直平分线,结合正方形的性质可得: 四边形为正方形,则 设 而AB=2,CD=3,EF=5,结合正方形的性质可得:而 又 而 解得: 故选A【点睛】本题考查的是正方形的性质,三角形外接圆圆心的确定,圆的基本性质,勾股定理的应用,二次根式的化简,确定过A,G, H三点的圆的圆心是解本题的关键.9、D【分析】连接,根据求得半径,进而根据的长,勾股定理的逆定理证明,根据弧长关系可得,即可证明是等边三角形,求得,进而由勾股定理即可求得【详解】如图,连接, ,是直角三角形,且是等边三角形是直径,故选D【点睛】本题考查了弧与圆心角的关系,直径所对的圆周角是90度,勾股定理,等边三角形的判定,求得的长是解题的关键.10、D【分析】根据旋转的性质推出相等的边CE=CF,旋转角推出∠ECF=90°,即可得到△CEF为等腰直角三角形.【详解】解:∵△CDE绕点C逆时针方向旋转90°后能与△CBF重合,∴∠ECF=90°,CE=CF,∴△CEF是等腰直角三角形,故选:D.【点睛】本题主要考查旋转的性质,掌握图形旋转前后的大小和形状不变是解决问题的关键.二、填空题1、60【分析】根据弧长公式求解即可.【详解】解:,解得,,故答案为:60.【点睛】本题考查了弧长公式,灵活应用弧长公式是解题的关键.2、②③④【分析】①当在点的右边时,得出即可判断;②证明出即可判断;③根据为等腰直角三角形,得出都是等腰直角三角形,得到即可判断;④当时,有最小值,计算即可.【详解】解:,为等腰直角三角形,,当在点的左边时,,当在点的右边时,,故①错误;过点作,在和中,根据旋转的性质得:,,,,,故②正确;由①中得知为等腰直角三角形,,也是等腰直角三角形,过点,不管P在上怎么运动,得到都是等腰直角三角形,,即直线一定经过点,故③正确;是等腰直角三角形,当时,有最小值,,为等腰直角三角形,,,由勾股定理:,,故④正确;故答案是:②③④.【点睛】本题是四边形综合题,考查了矩形的性质,全等三角形的判定和性质,旋转的性质,勾股定理,等腰直角三角形,解题的关键是灵活运用这些性质进行推理.3、【分析】过点作轴,交于点,根据中位线定理可得,设点到轴的距离为G,则△AOE的边上的高,作的外接圆,则当点位于图中处时,最大,根据三角形面积公式计算即可.【详解】解:过点作轴,交于点,∵A(-1,0),B(2,0),∴,,∵D为线段BC的中点,轴,∴,∴,设点到轴的距离为,则△AOE的边上的高,作的外接圆,则当点位于图中处时,最大,因为,∴,∴为等边三角形,∴,∴,∴,∴,∴,故答案为:.【点睛】本题考查了三角形中位线定理,圆周角定理,圆周角和圆心角的关系,等边三角形的判定与性质,解直角三角形等知识点,根据题意得出点的位置是解本题的关键.4、5【分析】设⊙O的半径为r,则OA=r,OD=r-2,先由垂径定理得到AD=BD=AB=4,再由勾股定理得到42+(r-2)2=r2,然后解方程即可.【详解】解:设⊙O的半径为r,则OC=OA=r,OE=OC-CE=r-2,∵OC⊥AB,AB=8,∴AE=BE=AB=4,在Rt△OAE中,由勾股定理得:42+(r-2)2=r2,解得:r=5,即⊙O的半径长为5,故答案为:5.【点睛】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.5、76°或142°【分析】设AB的中点为O,连接OD,则∠BOD为点D在量角器上对应的角,根据圆周角定理得∠BOD=2∠BCD,根据等腰三角形的性质分BC为底边和BC为腰求∠BCD的度数即可.【详解】解:设AB的中点为O,连接OD,则∠BOD为点D在量角器上对应的角,∵Rt△ABC的斜边AB与量角器的直径恰好重合,∴A、C、B、D四点共圆,圆心为点O,∴∠BOD=2∠BCD,①若BC为等腰三角形的底边时,如图射线CD1,则∠BCD1=∠ABC=38°,连接OD1,则∠BOD1=2∠BCD1=76°;②若BC为等腰三角形的腰时,当∠ABC为顶角时,如图射线CD2,则∠BCD2=(180°-∠ABC)÷2=71°,连接OD2,则∠BOD2=2∠BCD2=142°,当∠ABC为底角时,∠BCD=180°-2∠ABC=104°,不符合题意,舍去,综上,点D在量角器上对应的度数是76°或142°,故答案为:76°或142°.【点睛】本题考查圆周角定理、等腰三角形的性质、三角形的内角和定理,熟练掌握圆周角定理,利用分类讨论思想解决问题是解答的关键.三、解答题1、(1)图见解析,点的坐标为(2)图见解析,4【分析】(1)根据题意,腰长为无理数且为以AB为底的等腰三角形,只在第二象限,作图即可确定点,然后写出点的坐标即可;(2)现确定旋转后的点,然后依次连接即可,根据旋转前后三角形的面积不变,利用表格及勾股定理确定三角形的底和高,即可得出面积.(1)解:如图所示,点的坐标为;,为无理数,符合题意;(2)如图所示:点的坐标,点的坐标为,∵旋转180°后的的面积等于的面积, ,∴,∴的面积为4.【点睛】题目主要考查等腰三角形的定义及旋转图形的作法,理解题意,熟练掌握在坐标系中旋转图形的作法是解题关键.2、(1)0,;(2);(3)【分析】(1)根据新定义,即可求解;(2)过点O作OD⊥AB于点D,根据三角形的面积,可得,再由d(⊙O,线段AB)=0,可得当⊙O的半径等于OD时最小,当⊙O的半径等于OB时最大,即可求解;(3)过点C作CN⊥AB于点N ,利用锐角三角函数,可得∠OAB=60°,然后分三种情况:当点C在点A的右侧时,当点C与点A重合时,当点C在点A的左侧时,即可求解.【详解】解:(1)∵⊙O的半径为2,A(,0),B(0,).∴,∴点A在⊙O上,点B在⊙O外,∴d(A,⊙O)=,∴d(B,⊙O)=;(2)过点O作OD⊥AB于点D,∵点A(,0),B(0,).∴ ,∴ ,∵ ,∴ ∴,∵d(⊙O,线段AB)=0,∴当⊙O的半径等于OD时最小,当⊙O的半径等于OB时最大,∴r的取值范围是,(3)如图,过点C作CN⊥AB于点N ,∵点A(,0),B(0,).∴ ,∴ ,∴∠OAB=60°,∵C(m,0),当点C在点A的右侧时, ,∴ ,∴ ,∵d(⊙C,线段AB)<1,⊙C的半径为1,∴ ,解得: ,当点C与点A重合时, ,此时d(⊙C,线段AB)=0,当点C在点A的左侧时, ,∴ ,∴ ,解得: ,∴.【点睛】本题主要考查了点与圆的位置关系,点与直线的位置关系,理解新定义,熟练掌握点与圆的位置关系,点与直线的位置关系是解题的关键.3、(1)证明见解析;(2).【分析】(1)连接,只要证明即可.此题可运用三角形的中位线定理证,因为,所以.(2)根据直角三角形中角所对的直角边等于斜边的一半及勾股定理可分别求出的长和、的长,即可根据中位线性质求出的长,即的半径长.【详解】(1)证明:连接.因为是的中点,是的中点,,.,.,是圆的半径,是的切线.(2)如图,,,,,,且,,,且,∴,,,∴ ,的半径长为.【点睛】本题考查了切线的判定、直角三角形中角所对的直角边等于斜边的一半、勾股定理等知识.要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证它们垂直即可解决问题.4、【分析】连接OA,根据⊙O的半径为10,OM:MC=3:2可求出OM的长,由勾股定理求出AM的长,再由垂径定理求出AB的长即可.【详解】解:如图,连接OA.∵OM:MC=3:2,OC=10,∴OM==6.∵OC⊥AB,∴∠OMA=90°,AB=2AM.在Rt△AOM中,AO=10,OM=6,∴AM=8.∴AB=2AM =16.【点睛】本题考查的是垂径定理、勾股定理,掌握垂径定理的推论是解题的关键.5、(1)45°;(2)【分析】(1)根据旋转的性质得,,,,通过等量代换及三角形内角和得,根据四点共圆即可求得;(2)连接EB,先证明出,根据全等三角形的性质得,在中利用勾股定理,即可求得.【详解】解:(1)由旋转可知:,,,,∴,,.由三角形内角和定理得,∴点A,D,F,E共圆.∴.(2)连接EB,∵,∴.∵,∴.又∵,,∴.∴,.∴.在中,,,,∵,∴.【点睛】本题考查了旋转的性质、三角形全等判定及性质、勾股定理、三角形内角和等,解题的关键是掌握旋转的性质.
相关试卷
这是一份数学九年级下册第24章 圆综合与测试课后练习题,共34页。
这是一份数学九年级下册第24章 圆综合与测试复习练习题,共36页。试卷主要包含了下列判断正确的个数有等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第24章 圆综合与测试当堂检测题,共31页。