年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    难点解析沪科版九年级数学下册第24章圆难点解析试卷(无超纲带解析)

    立即下载
    加入资料篮
    难点解析沪科版九年级数学下册第24章圆难点解析试卷(无超纲带解析)第1页
    难点解析沪科版九年级数学下册第24章圆难点解析试卷(无超纲带解析)第2页
    难点解析沪科版九年级数学下册第24章圆难点解析试卷(无超纲带解析)第3页
    还剩33页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学九年级下册第24章 圆综合与测试复习练习题

    展开

    这是一份数学九年级下册第24章 圆综合与测试复习练习题,共36页。试卷主要包含了下列判断正确的个数有等内容,欢迎下载使用。
    沪科版九年级数学下册第24章圆难点解析
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,,,,都是上的点,,垂足为,若,则的度数为( )

    A. B. C. D.
    2、下列图形中,可以看作是中心对称图形的是( )
    A. B. C. D.
    3、如图,在△ABC中,∠BAC=130°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,则∠BAD的大小是(  )

    A.80° B.70° C.60° D.50°
    4、如图所示四个图形中,既是轴对称图形又是中心对称图形的是( )
    A. B.
    C. D.
    5、下列汽车标志中既是轴对称图形又是中心对称图形的是( )
    A. B. C. D.
    6、在半径为6cm的圆中,的圆心角所对弧的弧长是( )
    A.cm B.cm C.cm D.cm
    7、如图,在中,,,将绕点C逆时针旋转90°得到,则的度数为( )

    A.105° B.120° C.135° D.150°
    8、在直径为10cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽cm,则水的最大深度为( )

    A.1cm B.2cm C.3cm D.4cm
    9、下列判断正确的个数有( )
    ①直径是圆中最大的弦;
    ②长度相等的两条弧一定是等弧;
    ③半径相等的两个圆是等圆;
    ④弧分优弧和劣弧;
    ⑤同一条弦所对的两条弧一定是等弧.
    A.1个 B.2个 C.3个 D.4个
    10、平面直角坐标系中点关于原点对称的点的坐标是( )
    A. B. C. D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图所示,AB是⊙O的直径,弦CD⊥AB于H,∠A=30°,OH=1,则⊙O的半径是______.

    2、如图,点A,B,C在⊙O上,四边形OABC是平行四边形,若对角线AC=2,则的长为 _____.

    3、如图AB为⊙O的直径,点P为AB延长线上的点,过点P作⊙O的切线PE,切点为M,过A、B两点分别作PE垂线AC、BD,垂足分别为C、D,连接AM,则下列结论正确的是______(写所有正确论的号)
    ①AM平分∠CAB;②;③若AB=4,∠APE=30°,则的长为;④若AC=3BD,则有tan∠MAP=.

    4、如图,AB是半圆O的直径,点D在半圆O上,,,C是弧BD上的一个动点,连接AC,过D点作于H.连接BH,则在点C移动的过程中,线段BH的最小值是______.

    5、将点绕x轴上的点G顺时针旋转90°后得到点,当点恰好落在以坐标原点O为圆心,2为半径的圆上时,点G的坐标为________.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,AB是⊙O的直径,点D,E在⊙O上,四边形BDEO是平行四边形,过点D作交AE的延长线于点C.

    (1)求证:CD是⊙O的切线.
    (2)若,求阴影部分的面积.
    2、如图,AB是⊙O的一条弦,E是AB的中点,过点E作EC^OA于点C,过点B作O的切线交CE的延长线于点D .

    (1)求证:DB=DE;
    (2)若AB=12,BD=5,求AC长.
    3、如图,在中,,O为AC上一点,以点O为圆心,OC为半径的圆恰好与AB相切,切点为D,与AC的另一个交点为E.

    (1)求证:BO平分;
    (2)若,,求BO的长.
    4、新定义:在平面直角坐标系xOy中,若几何图形G与⊙A有公共点,则称几何图形G为⊙A的关联图形,特别地,若⊙A的关联图形G为直线,则称该直线为⊙A的关联直线.如图1,∠M为⊙A的关联图形,直线l为⊙A的关联直线.

    (1)已知⊙O是以原点为圆心,2为半径的圆,下列图形:
    ①直线y=2x+2;②直线y=﹣x+3;③双曲线y=,是⊙O的关联图形的是  (请直接写出正确的序号).

    (2)如图2,⊙T的圆心为T(1,0),半径为1,直线l:y=﹣x+b与x轴交于点N,若直线l是⊙T的关联直线,求点N的横坐标的取值范围.
    (3)如图3,已知点B(0,2),C(2,0),D(0,﹣2),⊙I经过点C,⊙I的关联直线HB经过点B,与⊙I的一个交点为P;⊙I的关联直线HD经过点D,与⊙I的一个交点为Q;直线HB,HD交于点H,若线段PQ在直线x=6上且恰为⊙I的直径,请直接写出点H横坐标h的取值范围.
    5、定理:一条弧所对的圆周角等于这条弧所对的圆心角的一半.如图1,∠A=∠O.
    已知:如图2,AC是⊙O的一条弦,点D在⊙O上(与A、C不重合),联结DE交射线AO于点E,联结OD,⊙O的半径为5,tan∠OAC=.

    (1)求弦AC的长.
    (2)当点E在线段OA上时,若△DOE与△AEC相似,求∠DCA的正切值.
    (3)当OE=1时,求点A与点D之间的距离(直接写出答案).

    -参考答案-
    一、单选题
    1、B
    【分析】
    连接OC.根据确定,,进而计算出,根据圆心角的性质求出,最后根据圆周角的性质即可求出.
    【详解】
    解:如下图所示,连接OC.

    ∵,
    ∴,.
    ∴.
    ∵.
    ∴.

    ∵和分别是所对的圆周角和圆心角,
    ∴.
    故选:B.
    【点睛】
    本题考查垂径定理,圆心角的性质,圆周角的性质,综合应用这些知识点是解题关键.
    2、B
    【分析】
    把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解.
    【详解】
    A.不是中心对称图形,故本选项不符合题意;
    B.是中心对称图形,故本选项符合题意;
    C.不是中心对称图形,故本选项不符合题意;
    D.不是中心对称图形,故本选项不符合题意.
    故选:B.
    【点睛】
    本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    3、A
    【分析】
    根据三角形旋转得出,,根据点A,D,E在同一条直线上利用邻补角关系求出,根据等腰三角形的性质即可得到∠DAC=50°,由此即可求解.
    【详解】
    证明:∵绕点C逆时针旋转得到,
    ∴,,
    ∴∠ADC=∠DAC,
    ∵点A,D,E在同一条直线上,
    ∴,
    ∴∠DAC=50°,
    ∴∠BAD=∠BAC-∠DAC=80°
    故选A.
    【点睛】
    本题考查三角形旋转性质,邻补角的性质,等腰三角形的性质与判定,解题的关键在于熟练掌握旋转的性质.
    4、D
    【分析】
    根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
    【详解】
    解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;
    B.既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;
    C.不是轴对称图形,是中心对称图形,故本选项不符合题意;
    D.既是轴对称图形,又是中心对称图形,故本选项符合题意.
    故选:D.
    【点睛】
    本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    5、C
    【分析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:A、是轴对称图形,不是中心对称图形,故此选项不符合题意;
    B、是轴对称图形,不是中心对称图形,故此选项不符合题意;
    C、是轴对称图形,是中心对称图形,故此选项符合题意;
    D、不是轴对称图形,是中心对称图形,故此选项不符合题意;
    故选:C.
    【点睛】
    此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    6、C
    【分析】
    直接根据题意及弧长公式可直接进行求解.
    【详解】
    解:由题意得:的圆心角所对弧的弧长是;
    故选C.
    【点睛】
    本题主要考查弧长计算,熟练掌握弧长计算公式是解题的关键.
    7、B
    【分析】
    由题意易得,然后根据三角形外角的性质可求解.
    【详解】
    解:由旋转的性质可得:,
    ∴;
    故选B.
    【点睛】
    本题主要考查旋转的性质及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键.
    8、B
    【分析】
    连接OB,过点O作OC⊥AB于点D,交⊙O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而得出CD的长即可.
    【详解】
    解:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,如图所示:

    ∵AB=8cm,
    ∴BD=AB=4(cm),
    由题意得:OB=OC==5cm,
    在Rt△OBD中,OD=(cm),
    ∴CD=OC-OD=5-3=2(cm),
    即水的最大深度为2cm,
    故选:B.
    【点睛】
    本题考查了垂径定理、勾股定理等知识;根据题意作出辅助线,构造出直角三角形是解答此题的关键.
    9、B
    【详解】
    ①直径是圆中最大的弦;故①正确,
    ②同圆或等圆中长度相等的两条弧一定是等弧;故②不正确
    ③半径相等的两个圆是等圆;故③正确
    ④弧分优弧、劣弧和半圆,故④不正确
    ⑤同一条弦所对的两条弧可位于弦的两侧,故不一定相等,则⑤不正确.
    综上所述,正确的有①③
    故选B
    【点睛】
    本题考查了圆相关概念,掌握弦与弧的关系以及相关概念是解题的关键.
    10、B
    【分析】
    根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解.
    【详解】
    解:平面直角坐标系中点关于原点对称的点的坐标是
    故选B
    【点睛】
    本题考查了关于原点对称的点的特征,掌握关于原点对称的两个点,横坐标、纵坐标分别互为相反数是解题的关键.
    二、填空题
    1、2
    【分析】
    连接OC,利用半径相等以及三角形的外角性质求得∠COH=60°,∠OCH=30°,利用30度角的直角三角形的性质即可求解.
    【详解】
    解:连接OC,

    ∵OA=OC,∠A=30°,
    ∴∠COH=2∠A=60°,
    ∵弦CD⊥AB于H,
    ∴∠OHC=90°,
    ∴∠OCH=30°,
    ∵OH=1,
    ∴OC=2OH=2,
    故答案为:2.
    【点睛】
    本题考查了垂径定理和含30°角的直角三角形的性质.熟练掌握垂径定理是解题的关键.
    2、
    【分析】
    连接OB,交AC于点D,根据有一组邻边相等的平行四边形是菱形,可得四边形OABC为菱形,根据菱形的性质可得:,,,根据等边三角形的判定得出为等边三角形,由此得出,在直角三角形中利用勾股定理即可确定圆的半径,然后代入弧长公式求解即可.
    【详解】
    解:如图所示,连接OB,交AC于点D,

    ∵四边形OABC为平行四边形,,
    ∴四边形OABC为菱形,
    ∴,,,
    ∵,
    ∴为等边三角形,
    ∴,
    ∴,
    在中,设,则,
    ∴,
    即,
    解得:或(舍去),
    ∴的长为:,
    故答案为:.
    【点睛】
    题目主要考查菱形的判定和性质,等边三角形的判定和性质,勾股定理,弧长公式等,熟练掌握各个定理和公式是解题关键.
    3、①②④
    【分析】
    连接OM,由切线的性质可得,继而得,再根据平行线的性质以及等边对等角即可求得,由此可判断①;通过证明,根据相似三角形的对应边成比例可判断②;求出,利用弧长公式求得的长可判断③;由,,,可得,继而可得,,进而有,在中,利用勾股定理求出PD的长,可得,由此可判断④.
    【详解】
    解:连接OM,

    ∵PE为的切线,
    ∴,
    ∵,
    ∴,
    ∴,
    ∵,,
    ∴,
    即AM平分,故①正确;
    ∵AB为的直径,
    ∴,
    ∵,,
    ∴,
    ∴,
    ∴,故②正确;
    ∵,
    ∴,
    ∵,
    ∴,
    ∴的长为,故③错误;
    ∵,,,
    ∴,
    ∴,
    ∴,
    ∴,
    又∵,,,
    ∴,
    又∵,
    ∴,
    设,则,
    ∴,
    在中,,
    ∴,
    ∴,
    由①可得,

    故④正确,
    故答案为:①②④.
    【点睛】
    本题考查了切线的性质,平行线分线段成比例定理,相似三角形的判定与性质,勾股定理等,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.
    4、##
    【分析】
    连接,取的中点,连接,由题可知点在以为圆心,为半径的圆上,当、、三点共线时,最小;求出,在中,,所以,即为所求.
    【详解】
    解:连接,取的中点,连接,


    点在以为圆心,为半径的圆上,
    当、、三点共线时,最小,
    是直径,

    ,,
    ,,
    在中,,

    故答案为:.
    【点睛】
    本题考查点的运动轨迹,勾股定理,解题的关键是能够根据点的运动情况,确定点的运动轨迹.
    5、或
    【分析】
    设点G的坐标为,过点A作轴交于点M,过点作轴交于点N,由全等三角形求出点坐标,由点在2为半径的圆上,根据勾股定理即可求出点G的坐标.
    【详解】
    设点G的坐标为,过点A作轴交于点M,过点作轴交于点N,
    如图所示:

    ∵,
    ∴,,
    ∵点A绕点G顺时针旋转90°后得到点,
    ∴,,
    ∴,
    ∵轴,轴,
    ∴,
    ∴,
    ∴,
    在与中,

    ∴,
    ∴,,
    ∴,
    ∴,
    在中,由勾股定理得:,
    解得:或,
    ∴或.
    故答案为:,.
    【点睛】
    本题考查旋转的性质、全等三角形的判定与性质以及勾股定理,掌握相关知识之间的应用是解题的关键.
    三、解答题
    1、(1)见详解;(2)
    【分析】
    (1)连接OD,由题意易得,则有△ODB是等边三角形,然后可得△AEO也为等边三角形,进而可得OD∥AC,最后问题可求证;
    (2)由(1)易得AE=ED,∠CED=∠OBD=60°,然后可得圆O的半径,进而可得扇形OED和△OED的面积,则有弓形ED的面积,最后问题可求解.
    【详解】
    (1)证明:连接OD,如图所示:

    ∵四边形BDEO是平行四边形,
    ∴,
    ∴△ODB是等边三角形,
    ∴∠OBD=∠BOD=60°,
    ∴∠AOE=∠OBD=60°,
    ∵OE=OA,
    ∴△AEO也为等边三角形,
    ∴∠EAO=∠DOB=60°,
    ∴AE∥OD,
    ∴∠ODC+∠C=180°,
    ∵CD⊥AE,
    ∴∠C=90°,
    ∴∠ODC=90°,
    ∵OD是圆O的半径,
    ∴CD是⊙O的切线.
    (2)解:由(1)得∠EAO=∠AOE=∠OBD=∠BOD=60°,ED∥AB,
    ∴∠EAO=∠CED=60°,
    ∵∠AOE+∠EOD+∠BOD=180°,
    ∴∠EOD=60°,
    ∴△DEO为等边三角形,
    ∴ED=OE=AE,
    ∵CD⊥AE,∠CED=60°,
    ∴∠CDE=30°,
    ∴,
    ∵,
    ∴,
    ∴,
    设△OED的高为h,
    ∴,
    ∴,
    ∴.
    【点睛】
    本题主要考查扇形面积公式、切线的判定定理及解直角三角形,熟练掌握扇形面积公式、切线的判定定理及解直角三角形是解题的关键.
    2、(1)见解析;(2)
    【分析】
    (1)由切线性质及等量代换推出∠4=∠5,再利用等角对等边可得出结论;
    (2)由已知条件得出sin∠DEF和sin∠AOE的值,利用对应角的三角函数值相等推出结论.
    【详解】
    (1)如图,

    ∵DC⊥OA,
    ∴∠1+∠3=90°,
    ∵BD为切线,
    ∴OB⊥BD,
    ∴∠2+∠5=90°,
    ∵OA=OB,
    ∴∠1=∠2,
    ∵∠3=∠4,
    ∴∠4=∠5,
    在△DEB中,∠4=∠5,
    ∴DE=DB.
    (2)如图,作DF⊥AB于F,

    连接OE,∵DB=DE,
    ∴EF=BE=3,
    在Rt△DEF中,EF=3,DE=BD=5,
    ∴DF=
    ∴sin∠DEF== ,
    ∵∠AOE,,
    ∴∠AOE=∠DEF,
    ∴在Rt△AOE中,sin∠AOE= ,
    ∵AE=6,
    ∴AO=.
    【点睛】
    本题考查了圆的性质,切线定理,三角形相似,三角函数等知识,结合图形正确地选择相应的知识点与方法进行解题是关键.
    3、(1)见解析;(2)2
    【分析】
    (1)连接OD,由与AB相切得,由HL定理证明由全等三角形的性质得,即可得证;
    (2)设的半径为,则,在中,得出关系式求出,可得出的长,在中,由正切值求出,在中,由勾股定理求出即可.
    【详解】
    (1)

    如图,连接OD,
    ∵与AB相切,
    ∴,
    在与中,

    ∴,
    ∴,
    ∴平分;
    (2)设的半径为,则,
    在中,,,
    ∴,
    解得:,
    ∴,
    在中,,即,
    在中,.
    【点睛】
    本题考查圆与直线的位置关系,全等三角形的判定与性质、三角函数以及勾股定理,掌握相关知识点的应用是解题的关键.
    4、(1)①③;(2)点N的横坐标;(3)或.
    【分析】
    (1)在坐标系中作出圆及三个函数图象,即可得;
    (2)根据题意可得直线l的临界状态是与圆T相切的两条直线和,当临界状态为时;当临界状态为时,根据勾股定理及直角三角形的性质即可得;
    (3)根据题意,只考虑横坐标的取值范围,所以将的圆心I平移到x轴上,分三种情况讨论:①当点Q在点P的上方时,连接BP、DQ,交于点H;②当点P在点Q的上方时,直线BP、DQ,交于点H,求出直线HB、直线HD的解析式,然后利用两点之间的距离解方程求解;③当时,两条直线与圆无公共点;综合三种情况即可得.
    【详解】
    解:(1)在坐标系中作出圆及三个函数图象,可得①③函数解析式与圆有公共点,

    故答案为:①③;
    (2)如图所示:

    ∵直线l是的关联直线,
    ∴直线l的临界状态是与相切的两条直线和,
    当临界状态为时,连接TM,
    ∴,,
    ∵当时,,
    当时,,
    ∴,
    ∴为等腰直角三角形,
    ∴,

    ∴点,
    同理可得当临界状态为时,
    点,
    ∴点N的横坐标;
    (3)①如图所示:只考虑横坐标的取值范围,所以将的圆心I平移到x轴上,当点Q在点P的上方时,连接BP、DQ,交于点H;

    设点,直线HB的解析式为,直线HD的解析式为,
    当时,与互为相反数,可得

    得,
    由图可得:,则,
    ∴,
    结合,
    解得:,,
    ∴,
    当时,,
    ∴,h的最大值为,
    ②如图所示:当点P在点Q的上方时,直线BP、DQ,交于点H,当圆心I在x轴上时,
    设点,直线HB的解析式为,直线HD的解析式为,

    当时,与互为相反数,可得

    得,
    由图可得:,则,
    ∴,
    结合,
    解得:,,
    ∴,
    当时,,
    ∴,h的最小值为,
    ③当时,两条直线与圆无公共点,不符合题意,
    ∴,
    综上可得:或.
    【点睛】
    题目主要考查直线与圆的位置关系,等腰三角形的性质,勾股定理解三角形等,理解题意,作出相应图形是解题关键.
    5、
    (1)8
    (2)
    (3)或.
    【分析】
    (1)过点O作OH⊥AC于点H,由垂径定理可得AH=CH=AC,由锐角三角函数和勾股定理可求解;
    (2)分两种情况讨论,由相似三角形的性质可求AG,EG,CG的长,即可求解;
    (3)分两种情况讨论,由相似三角形和勾股定理可求解.
    (1)
    如图2,过点O作OH⊥AC于点H,

    由垂径定理得:AH=CH=AC,
    在Rt△OAH中,,
    ∴设OH=3x,AH=4x,
    ∵OH2+AH2=OA2,
    ∴(3x)2+(4x)2=52,
    解得:x=±1,(x=﹣1舍去),
    ∴OH=3,AH=4,
    ∴AC=2AH=8;
    (2)
    如图2,过点O作OH⊥AC于H,过E作EG⊥AC于G,

    ∵∠DEO=∠AEC,
    ∴当△DOE与△AEC相似时可得:∠DOE=∠A或者∠DOE=∠ACD;


    ∴∠ACD≠∠DOE
    ∴当△DOE与△AEC相似时,不存在∠DOE=∠ACD情况,
    ∴当△DOE与△AEC相似时,∠DOE=∠A,
    ∴OD∥AC,
    ∴,
    ∵OD=OA=5,AC=8,
    ∴,
    ∴,
    ∵∠AGE=∠AHO=90°,
    ∴GE∥OH,

    ∴△AEG∽△AOH,
    ∴,
    ∴,
    ∴,
    ∴,,
    在Rt△CEG中,;
    (3)
    当点E在线段OA上时,如图3,过点E作EG⊥AC于G,过点O作OH⊥AC于H,延长AO交⊙O于M,连接AD,DM,

    由(1)可得 OH=3,AH=4,AC=8,
    ∵OE=1,
    ∴AE=4,ME=6,
    ∵EG∥OH,
    ∴△AEG∽△AOH,
    ∴,
    ∴AG=,EG=,
    ∴GC=,
    ∴EC===,
    ∵AM是直径,
    ∴∠ADM=90°=∠EGC,
    又∵∠M=∠C,
    ∴△EGC∽△ADM,
    ∴,
    ∴,
    ∴AD=2;
    当点E在线段AO的延长线上时,如图4,延长AO交⊙O于M,连接AD,DM,过点E作EG⊥AC于G,

    同理可求EG=,AG=,AE=6,GC=,
    ∴EC===,
    ∵AM是直径,
    ∴∠ADM=90°=∠EGC,
    又∵∠M=∠C,
    ∴△EGC∽△ADM,
    ∴,
    ∴,
    ∴AD=,
    综上所述:AD的长是或
    【点睛】
    本题考查了垂径定理,勾股定理,解直角三角形,求角的正切值,相似三角形的性质与判定,圆周角定理,正切的作出辅助线是解题的关键.

    相关试卷

    沪科版九年级下册第24章 圆综合与测试达标测试:

    这是一份沪科版九年级下册第24章 圆综合与测试达标测试,共36页。

    数学九年级下册第24章 圆综合与测试习题:

    这是一份数学九年级下册第24章 圆综合与测试习题,共30页。

    数学九年级下册第24章 圆综合与测试课后练习题:

    这是一份数学九年级下册第24章 圆综合与测试课后练习题,共34页。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map