年终活动
搜索
    上传资料 赚现金

    2022年最新沪科版九年级数学下册第24章圆章节训练试题(含解析)

    2022年最新沪科版九年级数学下册第24章圆章节训练试题(含解析)第1页
    2022年最新沪科版九年级数学下册第24章圆章节训练试题(含解析)第2页
    2022年最新沪科版九年级数学下册第24章圆章节训练试题(含解析)第3页
    还剩35页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中第24章 圆综合与测试当堂达标检测题

    展开

    这是一份初中第24章 圆综合与测试当堂达标检测题,共38页。
    沪科版九年级数学下册第24章圆章节训练
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,△ABC外接于⊙O,∠A=30°,BC=3,则⊙O的半径长为( )

    A.3 B. C. D.
    2、如图,AB 为⊙O 的直径,弦 CD^AB,垂足为点 E,若 ⊙O的半径为5,CD=8,则AE的长为( )

    A.3 B.2 C.1 D.
    3、如图,在中,,,,将绕点顺时针旋转得到,当点的对应点恰好落在边上时,的长为( )

    A.3 B.4 C.5 D.6
    4、如图,是△ABC的外接圆,已知,则的大小为( )

    A.55° B.60° C.65° D.75°
    5、下列图形中,既是中心对称图形又是抽对称图形的是( )
    A. B. C. D.
    6、往直径为78cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽,则水的最大深度为( )

    A.36 cm B.27 cm C.24 cm D.15 cm
    7、下列图形中,既是轴对称图形,又是中心对称图形的是(  )
    A. B. C. D.
    8、如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8.把△ABC绕点A逆时针方向旋转到△AB'C',点B'恰好落在AC边上,则CC'=(  )

    A.10 B.2 C.2 D.4
    9、如图,在△ABC中,∠BAC=130°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,则∠BAD的大小是(  )

    A.80° B.70° C.60° D.50°
    10、如图,为正六边形边上一动点,点从点出发,沿六边形的边以1cm/s的速度按逆时针方向运动,运动到点停止.设点的运动时间为,以点、、为顶点的三角形的面积是,则下列图像能大致反映与的函数关系的是( )

    A. B.
    C. D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在⊙O中,=,AB=10,BC=12,D是上一点,CD=5,则AD的长为______.

    2、如图,PA,PB分别切⊙O于点A,B,Q是优弧上一点,若∠P=40°,则∠Q的度数是________.

    3、如图,在Rt△ABC,∠B=90°,AB=BC=1,将△ABC绕着点C逆时针旋转60°,得到△MNC,那么BM=______________.

    4、如图,在平面直角坐标系中,一次函数y=-2x+4的图像与x轴、y轴分别交于点A、B,将直线AB绕点B顺时针旋转45°,交x轴于点C,则直线BC的函数表达式为_______.

    5、如图,已知正方形ABCD的边长为6,E为CD边上一点,将绕点A旋转至,连接,若,则的长等于______.

    三、解答题(5小题,每小题10分,共计50分)
    1、如图,△ABC内接于⊙O,D是⊙O的直径AB的延长线上一点,∠DCB=∠OAC.过圆心O作BC的平行线交DC的延长线于点E.

    (1)求证:CD是⊙O的切线;
    (2)若CD=4,CE=6,求⊙O的半径及tan∠OCB的值.
    2、如图,在等边中,D为BC边上一点,连接AD,将沿AD翻折得到,连接BE并延长交AD的延长线于点F,连接CF.

    (1)若,求的度数;
    (2)若,求的大小;
    (3)猜想CF,BF,AF之间的数量关系,并证明.
    3、如图AB是⊙O的直径,弦CD⊥AB于点E,作∠FAC=∠BAC,过点C作CF⊥AF于点F.

    (1)求证:CF是⊙O的切线;
    (2)若sin∠CAB=,求=_______.(直接写出答案)
    4、已知:如图,正方形的边长为1,在射线AB上取一点E,联结DE,将ADE绕点D针旋转90°,E点落在点F处,联结EF,与对角线BD所在的直线交于点M,与射线DC交于点N.求证:

    (1)当时,求的值;
    (2)当点E在线段AB上,如果,,求y关于x的函数解析式,并写出定义域;
    (3)联结AM,直线AM与直线BC交于点G,当时,求AE的值.
    5、如图1,BC是⊙O的直径,点A,P在⊙O上,且分别位于BC的两侧(点A、P均不与点B、C重合),过点A 作AQ⊥AP,交PC 的延长线于点Q,AQ交⊙O于点D,已知AB=3,AC=4.

    (1)求证:△APQ∽△ABC.
    (2)如图2,当点C为的中点时,求AP的长.
    (3)连结AO,OD,当∠PAC与△AOD的一个内角相等时,求所有满足条件的AP的长.

    -参考答案-
    一、单选题
    1、A
    【分析】
    分析:连接OA、OB,根据圆周角定理,易知∠AOB=60°;因此△ABO是等边三角形,即可求出⊙O的半径.
    【详解】
    解:连接BO,并延长交⊙O于D,连结DC,
    ∵∠A=30°,
    ∴∠D=∠A=30°,
    ∵BD为直径,
    ∴∠BCD=90°,
    在Rt△BCD中,BC=3,∠D=30°,
    ∴BD=2BC=6,
    ∴OB=3.
    故选A.

    【点睛】
    本题考查了圆周角性质,利用同弧所对圆周角性质与直径所对圆周角性质,30°角所对直角三角形性质,掌握圆周角性质,利用同弧所对圆周角性质与直径所对圆周角性质,30°角所对直角三角形性质是解题的关键.
    2、B
    【分析】
    连接OC,由垂径定理,得到CE=4,再由勾股定理求出OE的长度,即可求出AE的长度.
    【详解】
    解:连接OC,如图

    ∵AB 为⊙O 的直径,CD^AB,垂足为点 E,CD=8,
    ∴,
    ∵,
    ∴,
    ∴;
    故选:B.
    【点睛】
    本题考查了垂径定理,勾股定理,解题的关键是掌握所学的知识,正确的求出.
    3、A
    【分析】
    先根据旋转的性质可得,再根据等边三角形的判定与性质可得,然后根据线段的和差即可得.
    【详解】
    由旋转的性质得:,

    是等边三角形,



    故选:A.
    【点睛】
    本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键.
    4、C
    【分析】
    由OA=OB,,求出∠AOB=130°,根据圆周角定理求出的度数.
    【详解】
    解:∵OA=OB,,
    ∴∠BAO=.
    ∴∠AOB=130°.
    ∴=∠AOB=65°.
    故选:C.
    【点睛】
    此题考查了同圆中半径相等的性质,圆周角定理:同弧所对的圆周角等于圆心角的一半.
    5、B
    【详解】
    解:.是轴对称图形,不是中心对称图形,故此选项不符合题意;
    .既是轴对称图形,也是中心对称图形,故此选项符合题意;
    .是轴对称图形,不是中心对称图形,故此选项不符合题意;
    .不是轴对称图形,是中心对称图形,故此选项不符合题意;
    故选:B.
    【点睛】
    本题主要考查了中心对称图形和轴对称图形的概念,解题的关键是判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    6、C
    【分析】
    连接,过点作于点,交于点,先由垂径定理求出的长,再根据勾股定理求出的长,进而得出的长即可.
    【详解】
    解:连接,过点作于点,交于点,如图所示:

    则,
    的直径为,

    在中,,

    即水的最大深度为,
    故选:C.
    【点睛】
    本题考查了垂径定理、勾股定理等知识,解题的关键是根据题意作出辅助线,构造出直角三角形是解答此题的关键.
    7、C
    【详解】
    解:选项A是轴对称图形,不是中心对称图形,故A不符合题意;
    选项B不是轴对称图形,是中心对称图形,故B不符合题意;
    选项C既是轴对称图形,也是中心对称图形,故C符合题意;
    选项D是轴对称图形,不是中心对称图形,故D不符合题意;
    故选C
    【点睛】
    本题考查的是轴对称图形的识别,中心对称图形的识别,掌握“轴对称图形与中心对称图形的定义”是解本题的关键,轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能够完全重合;中心对称图形:把一个图形绕某点旋转后能与自身重合.
    8、D
    【分析】
    首先运用勾股定理求出AC的长度,然后结合旋转的性质得到AB= AB',BC= B'C',从而求出B'C,即可在Rt△B'C'C中利用勾股定理求解.
    【详解】
    解:∵在Rt△ABC中,AB=6,BC=8,
    ∴,
    由旋转性质可知,AB= AB'=6,BC= B'C'=8,
    ∴B'C=10-6=4,
    在Rt△B'C'C中,,
    故选:D.
    【点睛】
    本题考查勾股定理,以及旋转的性质,掌握旋转变化的基本性质,熟练运用勾股定理求解是解题关键.
    9、A
    【分析】
    根据三角形旋转得出,,根据点A,D,E在同一条直线上利用邻补角关系求出,根据等腰三角形的性质即可得到∠DAC=50°,由此即可求解.
    【详解】
    证明:∵绕点C逆时针旋转得到,
    ∴,,
    ∴∠ADC=∠DAC,
    ∵点A,D,E在同一条直线上,
    ∴,
    ∴∠DAC=50°,
    ∴∠BAD=∠BAC-∠DAC=80°
    故选A.
    【点睛】
    本题考查三角形旋转性质,邻补角的性质,等腰三角形的性质与判定,解题的关键在于熟练掌握旋转的性质.
    10、A
    【分析】
    设正六边形的边长为1,当在上时,过作于 而 求解此时的函数解析式,当在上时,延长交于点 过作于 并求解此时的函数解析式,当在上时,连接 并求解此时的函数解析式,由正六边形的对称性可得:在上的图象与在上的图象是对称的,在上的图象与在上的图象是对称的,从而可得答案.
    【详解】
    解:设正六边形的边长为1,当在上时,
    过作于 而




    当在上时,延长交于点 过作于

    同理:
    则为等边三角形,



    当在上时,连接

    由正六边形的性质可得:

    由正六边形的对称性可得: 而


    由正六边形的对称性可得:在上的图象与在上的图象是对称的,
    在上的图象与在上的图象是对称的,
    所以符合题意的是A,
    故选A
    【点睛】
    本题考查的是动点问题的函数图象,锐角三角函数的应用,正多边形的性质,清晰的分类讨论是解本题的关键.
    二、填空题
    1、3
    【分析】
    过A作AE⊥BC于E,过C作CF⊥AD于F,根据圆周角定理可得∠ACB=∠B=∠D,AB=AC=10,再由等腰三角形的性质可知BE=CE=6,根据相似三角形的判定证明△ABE∽△CDF,由相似三角形的性质和勾股定理分别求得AE、DF、CF, AF即可求解.
    【详解】
    解:过A作AE⊥BC于E,过C作CF⊥AD于F,则∠AEB=∠CFD=90°,
    ∵=, AB=10,
    ∴∠ACB=∠B=∠D,AB=AC=10,
    ∵AE⊥BC,BC=12,
    ∴BE=CE=6,
    ∴,
    ∵∠B=∠D,∠AEB=∠CFD=90°,
    ∴△ABE∽△CDF,
    ∴,
    ∵AB=10,CD=5,BE=6,AE=8,
    ∴,
    解得:DF=3,CF=4,
    在Rt△AFC中,∠AFC=90°,AC=10,CF=4,
    则,
    ∴AD=DF+AF=3+2,
    故答案为:3+2.

    【点睛】
    本题考查圆周角定理、等腰三角形的性质、相似三角形的判定与性质、勾股定理,熟练掌握圆周角定理和相似三角形的判定与性质是解答的关键.
    2、70°度
    【分析】
    连接OA、OB,根据切线性质可得∠OAP=∠OBP=90°,再根据四边形的内角和为360°求得∠AOB,然后利用圆周角定理求解即可.
    【详解】
    解:连接OA、OB,
    ∵PA,PB分别切⊙O于点A,B,
    ∴∠OAP=∠OBP=90°,又∠P=40°,
    ∴∠AOB=360°-90°-90°-40°=140°,
    ∴∠Q=∠AOB=70°,
    故答案为:70°.

    【点睛】
    本题考查切线性质、四边形内角和为360°、圆周角定理,熟练掌握切线性质和圆周角定理是解答的关键.
    3、
    【分析】
    设BN与AC交于D,过M作MF⊥BA于F,过M作ME⊥BC于E,连接AM,先证明△EMC≌△FMA得ME=MF,从而可得∠CBD=45°,∠CDB=180°-∠BCA-∠CBD=90°,再在Rt△BCD、Rt△CDM中,分别求出BD和DM,即可得到答案.
    【详解】
    解:设BN与AC交于D,过M作MF⊥BA于F,过M作ME⊥BC于E,连接AM,如图:

    ∵△ABC绕着点C逆时针旋转60°,
    ∴∠ACM=60°,CA=CM,
    ∴△ACM是等边三角形,
    ∴CM=AM①,∠ACM=∠MAC=60°,
    ∵∠B=90°,AB=BC=1,
    ∴∠BCA=∠CAB=45°,AC==CM,
    ∴∠BCM=∠BCA+∠ACM=105°,∠BAM=∠CAB+∠MAC=105°,
    ∴∠ECM=∠MAF=75°②,
    ∵MF⊥BA,ME⊥BC,
    ∴∠E=∠F=90°③,
    由①②③得△EMC≌△FMA,
    ∴ME=MF,
    而MF⊥BA,ME⊥BC,
    ∴BM平分∠EBF,
    ∴∠CBD=45°,
    ∴∠CDB=180°-∠BCA-∠CBD=90°,
    Rt△BCD中,BD=BC=,
    Rt△CDM中,DM=CM =,
    ∴BM=BD+DM=,
    故答案为:.
    【点睛】
    本题考查等腰三角形性质、等边三角形的性质及判定,解题的关键是证明∠CDB=90°.
    4、##
    【分析】
    先求出点A、B的坐标,过点A作AF⊥AB,交直线BC于点F,过点F作EF⊥x轴,垂足为E,然后由全等三角形的判定和性质,等腰直角三角形的性质,求出点F的坐标,再利用待定系数法,即可求出答案.
    【详解】
    解:∵一次函数y=-2x+4的图像与x轴、y轴分别交于点A、B两点,
    ∴令,则;令,则,
    ∴点A为(2,0),点B为(0,4),
    ∴,;
    过点A作AF⊥AB,交直线BC于点F,过点F作EF⊥x轴,垂足为E,如图,

    ∴,
    ∴,
    ∴,
    ∵,
    ∴△ABF是等腰直角三角形,
    ∴AF=AB,
    ∴△ABO≌△FAE(AAS),
    ∴AO=FE,BO=AE,
    ∴,,
    ∴,
    ∴点F的坐标为(,);
    设直线BC为,则
    ,解得:,
    ∴直线BC的函数表达式为;
    故答案为:;
    【点睛】
    本题考查了一次函数的性质,全等三角形的判定和性质,等腰三角形的判定和性质,以及旋转的性质,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行解题.
    5、4
    【分析】
    在正方形ABCD中,BE′=DE=2,所以在直角三角形E′CE中,E′C=8,CE=4,利用勾股定理求得EE′的长即可.
    【详解】
    解:在正方形ABCD中,∠C=90°,
    由旋转得,BE′=DE=2,
    ∴E′C=8,CE=4,
    ∴在直角三角形E′CE中,
    EE′===4.
    故答案为4.
    【点睛】
    本题考查了正方形的性质、旋转的性质与勾股定理的知识,正确的利用旋转和正方形的性质得出直角三角形边长并正确的应用勾股定理是解题的关键.
    三、解答题
    1、
    (1)见解析
    (2)3,2
    【分析】
    (1)由等腰三角形的性质与已知条件得出,∠OCA=∠DCB,由圆周角定理可得∠ACB=90°,进而得到∠OCD=90°,即可得出结论;
    (2)根据平行线分线段成比例定理得到,设BD=2x,则OB=OC=3x,OD=OB+BD=5x,在Rt△OCD中,根据勾股定理求出x=1,即⊙O的半径为3,由平行线的性质得到∠OCB=∠EOC,在Rt△OCE中,可求得tan∠EOC=2,即tan∠OCB=2.
    (1)
    证明:∵OA=OC,
    ∴∠OAC=∠OCA,
    ∵∠DCB=∠OAC,
    ∴∠OCA=∠DCB,
    ∵AB是⊙O的直径,
    ∴∠ACB=90°,
    ∴∠OCA+∠OCB=90°,
    ∴∠DCB+∠OCB=90°,
    即∠OCD=90°,
    ∴OC⊥DC,
    ∵OC是⊙O的半径,
    ∴CD是⊙O的切线;
    (2)
    ∵OE∥BC,
    ∴,
    ∵CD=4,CE=6,
    ∴,
    设BD=2x,则OB=OC=3x,OD=OB+BD=5x,
    ∵OC⊥DC,
    ∴△OCD是直角三角形,
    在Rt△OCD中,OC2+CD2=OD2,
    ∴(3x)2+42=(5x)2,
    解得,x=1,
    ∴OC=3x=3,即⊙O的半径为3,
    ∵BC∥OE,
    ∴∠OCB=∠EOC,
    在Rt△OCE中,tan∠EOC=,
    ∴tan∠OCB=tan∠EOC=2.
    【点睛】
    本题考查了圆周角定理、勾股定理、平行线的性质、等腰三角形的性质、切线的判定、三角函数、平行线分线段成比例定理等知识;熟练掌握切线的判定与平行线分线段成比例定理是解题的关键.
    2、(1)20°;(2);(3)AF= CF+BF,理由见解析
    【分析】
    (1)由△ABC是等边三角形,得到AB=AC,∠BAC=∠ABC=60°,由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE,则∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE,,∠CBF=∠ABE-∠ABC=20°;
    (2)同(1)求解即可;
    (3)如图所示,将△ABF绕点A逆时针旋转60°得到△ACG,先证明△AEF≌△ACF得到∠AFE=∠AFC,然后证明∠AFE=∠AFC=60°,得到∠BFC=120°,即可证明F、C、G三点共线,得到△AFG是等边三角形,则AF=GF=CF+CG=CF+BF.
    【详解】
    解:(1)∵△ABC是等边三角形,
    ∴AB=AC,∠BAC=∠ABC=60°,
    由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE,
    ∴∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE,
    ∴,
    ∴∠CBF=∠ABE-∠ABC=20°;
    (2)∵△ABC是等边三角形,
    ∴AB=AC,∠BAC=∠ABC=60°,
    由折叠的性质可知,,AC=AE,
    ∴ ,AB=AE,
    ∴,
    ∴;
    (3)AF= CF+BF,理由如下:
    如图所示,将△ABF绕点A逆时针旋转60°得到△ACG,
    ∴AF=AG,∠FAG=60°,∠ACG=∠ABF,BF=CG
    在△AEF和△ACF中,

    ∴△AEF≌△ACF(SAS),
    ∴∠AFE=∠AFC,
    ∵∠CBF+∠BCF+∠BFD+∠CFD=180°,∠CAF+∠CFA+∠ACD+∠CFD=180°,
    ∴∠BFD=∠ACD=60°,
    ∴∠AFE=∠AFC=60°,
    ∴∠BFC=120°,
    ∴∠BAC+∠BFC=180°,
    ∴∠ABF+∠ACF=180°,
    ∴∠ACG+∠ACF=180°,
    ∴F、C、G三点共线,
    ∴△AFG是等边三角形,
    ∴AF=GF=CF+CG=CF+BF.

    【点睛】
    本题主要考查了等边三角形的性质与判定,旋转的性质,折叠的性质,全等三角形的性质与判定,三角形内角和定理,熟知相关知识是解题的关键.
    3、
    (1)见解析
    (2)
    【分析】
    (1)如图,连接OC,根据等腰三角形的性质可得∠CAB=∠ACO,即可得出∠FAC=∠ACO,可得AF//OC,根据平行线的性质可得∠AFC+∠OCF=180°,根据CF⊥AF可得∠OCF=90°,即可得出CF是⊙O的切线;
    (2)利用AAS可证明△AFC≌△AEC,可得S△AFC=S△AEC,根据垂径定理可得CE=DE,可得S△BCD=2S△BCE,根据AB是直径可得∠ACB=90°,根据角的和差关系可得∠BCE=∠CAB,根据正弦的定义可得,可得BE=,AB=,进而可得AE=,根据三角形面积公式即可得答案.
    (1)
    (1)如图,连接OC,
    ∵OA=OC,
    ∴∠CAB=∠ACO,
    ∵∠FAC=∠BAC,
    ∴∠FAC=∠ACO,
    ∴AF//OC,
    ∴∠AFC+∠OCF=180°,
    ∵CF⊥AF,
    ∴∠OCF=90°,即OC⊥CF,
    ∴CF是⊙O的切线.
    (2)
    在△AFC和△AEC中,,
    ∴△AFC≌△AEC,
    ∴S△AFC=S△AEC,
    ∵AB是⊙O的直径,CD⊥AB,
    ∴CE=DE,
    ∴S△BCD=2S△BCE,
    ∵∠BCE+∠CBA=90°,∠CAB+∠CBA=90°,
    ∴∠BCE=∠CBA,
    ∵sin∠CAB=,
    ∴sin∠CAB=sin∠BCE=,
    ∴BE=,AB=,
    ∴AE=,
    ∴====.
    故答案为:
    【点睛】
    本题考查切线的判定、圆周角定理、垂径定理、全等三角形的判定与性质及三角函数的定义,经过半径的外端点,且垂直于这条半径的直线是圆的切线;直径所对的圆周角是90°;垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧;在直角三角形中,锐角的正弦是锐角的对边与斜边的比值;熟练掌握相关性质及判定定理是解题关键.
    4、
    (1);
    (2),0≤x≤1;
    (3)AE的值为或.
    【分析】
    (1)过点E作EH⊥BD与H,根据正方形的边长为1,,求出EB=1-,根据正方形性质可求∠ABD=45°,根据EH⊥BD,得出∠BEH=180°-∠EBH-∠EHB=180°-45°-90°=45°,求出EH=BH=BEsin45=,以及 DH=DB-BH=,利用三角函数定义求解即可;
    (2)解:根据AE=x,求出BE=1-x,根据旋转将△ADE绕点D针旋转90°,得到△DCF,CF=AE=x,根据勾股定理ED=FD=,EF=,可证△DEF为等腰直角三角形,先证△BEM∽△FDM,得出,再证△EMD∽△BMF,得出,两式相乘得出,整理即可;
    (3)当点G在BC上,,先证△BGM∽△DAM,得出,由(2)知△BEM∽△FDM,得出,得出,结合,消去y, 当点G在CB延长线上,,过M作ML⊥BC,交直线BC于L,证明△BGM∽△DAM,得出,根据∠LBM=∠CBD=45°,ML⊥BC,证出△MLB为等腰直角三角形,再证△MLB∽△DCB,,CD=1,ML=,ML∥BE,结合△LMF∽△BEF,得出即解方程即可.
    (1)
    解:过点E作EH⊥BD与H,
    ∵正方形的边长为1,,
    ∴EB=1-,
    ∵BD为正方形对角线,
    ∴BD平分∠ABC,
    ∴∠ABD=45°,
    ∵EH⊥BD,
    ∴∠BEH=180°-∠EBH-∠EHB=180°-45°-90°=45°,
    ∴EH=BH,
    ∴EH=BH=BEsin45=,AB=BDcos45°,
    ∴,
    ∴DH=DB-BH=,

    (2)
    解:如上图,∵AE=x,
    ∴BE=1-x,
    ∵将△ADE绕点D针旋转90°,得到△DCF,
    ∴CF=AE=x,ED=FD=,
    ∴BF=BC+CF=1+x,
    在Rt△EBF中EF=,
    ∵∠EDF=90°,ED=FD,
    ∴△DEF为等腰直角三角形,
    ∴∠DFE=∠DEF=45°,
    ∴∠EBM=∠MFD=45°,
    ∵∠EMB=∠DMF,
    ∴△BEM∽△FDM,
    ∴,即,
    ∵∠DEM=∠FBM=45°,∠EMD=∠BMF,
    ∴△EMD∽△BMF,
    ∴,即,
    ∴,
    ∴,
    ∴即,
    ∴,0≤x≤1;
    (3)
    解:当点G在BC上,,
    ∵四边形ABCD为正方形,
    ∴AD∥BG,
    ∴∠DAM=∠BGM,∠ADM=∠GBM,
    ∴△BGM∽△DAM,
    ∴,
    ∵由(2)知△BEM∽△FDM,
    ∴,
    ∵DB=,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴即,
    解,舍去;

    当点G在CB延长线上,,过M作ML⊥BC,交直线BC于L,
    ∵GB∥AD,
    ∴∴∠DAM=∠BGM,∠ADM=∠GBM,
    ∴△BGM∽△DAM,
    ∴,
    ∴,
    ∴,
    ∵∠LBM=∠CBD=45°,ML⊥BC,
    ∴△MLB为等腰直角三角形,
    ∵ML∥CD,
    ∴∠LMB=∠CDB,∠L=∠DCB,
    ∴△MLB∽△DCB,
    ∴,CD=1,
    ∴ML=
    ∵ML∥BE,
    ∴∠L=∠FBE,∠LMF=∠BEF,
    ∴△LMF∽△BEF,
    ∴,
    ∵BE=AE-AB=x-1,LF=LB+BC+CF=,BF=BC+CF=1+x,
    ∴,
    整理得:,
    解得,舍去,

    ∴AE的值为或.
    【点睛】
    本题考查正方形性质,图形旋转先证,等腰直角三角形判定与性质,锐角三角函数定义,三角形相似判定与性质,勾股定理,解一元二次方程,函数关系式,本题难度大,利用辅助线狗仔三角形相似是解题关键.
    5、(1)见解析;(2)(3)当,时,;当时,.
    【分析】
    (1)通过证,,即可得;
    (2)先证是等腰直角三角形,求,通过,得,求CQ长,即可求PQ得长,通过,即可得,即可求AP.
    (3)分类讨论, ,,,三种情况讨论,再通过勾股定理和相似即可求解.
    【详解】
    证明:(1)∵AQ⊥AP

    ∵BC是⊙O的直径




    (2)如图,连接CD,PD

    ∵BC是⊙O的直径

    ∵AB=3,AC=4
    ∴利用勾股定理得:,即直径为5


    ∴DP是⊙O的直径,且DP=BC=5
    ∵点C为的中点
    ∴CD=PC


    ∴是等腰直角三角形
    ∴利用勾股定理得:,则
    ∵,



    ∴,即:



    ∴,即:

    (3)连接AO,OD,OP,CD,OD交AC于点M

    ∵(已证)
    ∴OD,OP共线,为⊙O的直径
    情况一:当时
    ∵,

    ∴AP=PC



    ∴即
    ∵AP=PC

    ∴在中,

    ∴在中,
    情况二:当时,



    同情况一:
    情况三:当时
    ∵,

    ∴,
    ∵OA=OD



    综上所述,当,时,;当时,.
    【点睛】
    本题考查了圆周角定理,垂径定理,圆的内接四边形的性质,勾股定理,相似三角形的性质和判定等,是圆的综合题。解答此题的关键是,通过圆的性质,找到角与角、边与边之间的关系.

    相关试卷

    2021学年第24章 圆综合与测试精练:

    这是一份2021学年第24章 圆综合与测试精练,共33页。

    初中数学沪科版九年级下册第24章 圆综合与测试同步达标检测题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试同步达标检测题,共30页。试卷主要包含了将一把直尺等内容,欢迎下载使用。

    数学九年级下册第24章 圆综合与测试课后测评:

    这是一份数学九年级下册第24章 圆综合与测试课后测评,共34页。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map