![2022年精品解析沪科版九年级数学下册第24章圆专项测试试卷(含答案详解)第1页](http://m.enxinlong.com/img-preview/2/3/12685524/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年精品解析沪科版九年级数学下册第24章圆专项测试试卷(含答案详解)第2页](http://m.enxinlong.com/img-preview/2/3/12685524/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年精品解析沪科版九年级数学下册第24章圆专项测试试卷(含答案详解)第3页](http://m.enxinlong.com/img-preview/2/3/12685524/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
沪科版第24章 圆综合与测试综合训练题
展开
这是一份沪科版第24章 圆综合与测试综合训练题,共26页。试卷主要包含了下列说法正确的个数有等内容,欢迎下载使用。
沪科版九年级数学下册第24章圆专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,可以看作是中心对称图形的是( )A. B. C. D.2、如图,圆形螺帽的内接正六边形的面积为24cm2,则圆形螺帽的半径是( )A.1cm B.2cm C.2cm D.4cm3、如图,A,B,C是正方形网格中的三个格点,则是( )A.优弧 B.劣弧 C.半圆 D.无法判断4、如图所示四个图形中,既是轴对称图形又是中心对称图形的是( )A. B.C. D.5、如图,AB,CD是⊙O的弦,且,若,则的度数为( )A.30° B.40° C.45° D.60°6、如图,将△OAB绕点O逆时针旋转80°得到△OCD,若∠A的度数为110°,∠D的度数为40°,则∠AOD的度数是( )A.50° B.60° C.40° D.30°7、下列四个图案中,是中心对称图形的是( )A. B.C. D.8、如图,直线交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作⊙P,当⊙P与直线AB相切时,点P的坐标是( )A. B.C.或 D.(﹣2,0)或(﹣5,0)9、下列说法正确的个数有( )①方程的两个实数根的和等于1;②半圆是弧;③正八边形是中心对称图形;④“抛掷3枚质地均匀的硬币全部正面朝上”是随机事件;⑤如果反比例函数的图象经过点,则这个函数图象位于第二、四象限.A.2个 B.3个 C.4个 D.5个10、在圆内接四边形ABCD中,∠A、∠B、∠C的度数之比为2:4:7,则∠B的度数为( )A.140° B.100° C.80° D.40°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在⊙O中,∠BOC=80°,则∠A=___________°.2、已知O、I分别是△ABC的外心和内心,∠BIC=125°,则∠BOC的大小是 ___度.3、如图,在平行四边形中,,,,以点为圆心,为半径的圆弧交于点,连接,则图中黑色阴影部分的面积为________.(结果保留)4、是的内接正六边形一边,点是优弧上的一点(点不与点,重合)且,与交于点,则的度数为_______.5、如图,AB是半圆O的直径,点D在半圆O上,,,C是弧BD上的一个动点,连接AC,过D点作于H.连接BH,则在点C移动的过程中,线段BH的最小值是______.三、解答题(5小题,每小题10分,共计50分)1、如图,已知AB是⊙O的直径,⊙O过BC的中点D,且.(1)求证:DE是⊙O的切线;(2)若,,求的半径.2、如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(与A、B不重合),连接CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连接DE、BE(1)求证:△ACD≌△BCE;(2)若BE=5,DE=13,求AB的长3、如图,已知为的直径,切于点C,交的延长线于点D,且.(1)求的大小;(2)若,求的长.4、如图AB是⊙O的直径,弦CD⊥AB于点E,作∠FAC=∠BAC,过点C作CF⊥AF于点F.(1)求证:CF是⊙O的切线;(2)若sin∠CAB=,求=_______.(直接写出答案)5、如图,⊙O的半径为10cm,弦AB垂直平分半径OC,垂足为点D.(1)弦AB的长为 .(2)求劣弧的长. -参考答案-一、单选题1、B【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解.【详解】A.不是中心对称图形,故本选项不符合题意;B.是中心对称图形,故本选项符合题意;C.不是中心对称图形,故本选项不符合题意;D.不是中心对称图形,故本选项不符合题意.故选:B.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2、D【分析】根据圆内接正六边形的性质可得△AOB是正三角形,由面积公式可求出半径.【详解】解:如图,由圆内接正六边形的性质可得△AOB是正三角形,过作于 设半径为r,即OA=OB=AB=r, OM=OA•sin∠OAB=, ∵圆O的内接正六边形的面积为(cm2), ∴△AOB的面积为(cm2), 即, , 解得r=4, 故选:D.【点睛】本题考查正多边形和圆,作边心距转化为直角三角形的问题是解决问题的关键.3、B【分析】根据三点确定一个圆,圆心的确定方法:任意两点中垂线的交点为圆心即可判断.【详解】解;如图,分别连接AB、AC、BC,取任意两条线段的中垂线相交,交点就是圆心.故选:B.【点睛】本题考查已知圆上三点求圆心,取任意两条线段中垂线交点确定圆心是解题关键.4、D【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;B.既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;C.不是轴对称图形,是中心对称图形,故本选项不符合题意;D.既是轴对称图形,又是中心对称图形,故本选项符合题意.故选:D.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.5、B【分析】由同弧所对的圆周角是圆心角的一半可得,利用平行线的性质:两直线平行,内错角相等即可得.【详解】解:∵,∴,∵,∴,故选:B.【点睛】题目主要考查圆周角定理,平行线的性质等,理解题意,找出相关的角度是解题关键.6、A【分析】根据旋转的性质求解再利用三角形的内角和定理求解再利用角的和差关系可得答案.【详解】解: 将△OAB绕点O逆时针旋转80°得到△OCD, ∠A的度数为110°,∠D的度数为40°, 故选A【点睛】本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.7、A【分析】中心对称图形是指绕一点旋转180°后得到的图形与原图形能够完全重合的图形,由此判断即可.【详解】解:根据中心对称图形的定义,可知A选项的图形为中心对称图形,故选:A.【点睛】本题考查中心对称图形的识别,掌握中心对称图形的基本定义是解题关键.8、C【分析】由题意根据函数解析式求得A(-4,0),B(0.-3),得到OA=4,OB=3,根据勾股定理得到AB=5,设⊙P与直线AB相切于D,连接PD,则PD⊥AB,PD=1,根据相似三角形的性质即可得到结论.【详解】解:∵直线交x轴于点A,交y轴于点B,∴令x=0,得y=-3,令y=0,得x=-4,∴A(-4,0),B(0,-3),∴OA=4,OB=3,∴AB=5,设⊙P与直线AB相切于D,连接PD,则PD⊥AB,PD=1,∵∠ADP=∠AOB=90°,∠PAD=∠BAO,∴△APD∽△ABO,∴,∴,∴AP= ,∴OP= 或OP= ,∴P或P,故选:C.【点睛】本题考查切线的判定和性质,一次函数图形上点的坐标特征,相似三角形的判定和性质,正确的理解题意并运用数形结合思维分析是解题的关键.9、B【分析】根据所学知识对五个命题进行判断即可.【详解】1、,故方程无实数根,故本命题错误;2、圆上任意两点间的部分叫做圆弧,半圆也是,故本命题正确;3、八边形绕中心旋转180°以后仍然与原图重合,故本命题正确;4、抛硬币无论抛多少,出现正反面朝上都是随机事件,故抛三枚硬币全部正面朝上也是随机事件,故本命题正确;5、反比例函数的图象经过点 (1,2) ,则,它的函数图像位于一三象限,故本命题错误综上所述,正确个数为3故选B【点睛】本题考查一元二次函数判别式、弧的定义、中心对称图形判断、随机事件理解、反比例函数图像,掌握这些是本题关键.10、C【分析】,,,进而求解的值.【详解】解:由题意知∵∴∴∵∴故选C.【点睛】本题考查了圆内接四边形中对角互补.解题的关键在于根据角度之间的数量关系求解.二、填空题1、40°度【分析】直接根据圆周角定理即可得出结论.【详解】解:与是同弧所对的圆心角与圆周角,,.故答案为:.【点睛】本题考查的是圆周角定理,解题的关键是熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.2、140【分析】作的外接圆,根据三角形内心的性质可得:,,再由三角形内角和定理得出:,最后根据三角形外心的性质及圆周角定理即可得.【详解】解:如图所示,作的外接圆,∵点I是的内心,∴BI,CI分别平分和,∴,,∵,∴,∴,∴,∵点O是的外心,∴,故答案为:140.【点睛】题目主要考查三角形内心与外心的性质,三角形内角和定理等,理解题意,熟练掌握三角形内心与外心的性质是解题关键.3、【分析】过点C作于点H,根据正弦定义解得CH的长,再由扇形面积公式、三角形的面积公式解题即可.【详解】解:过点C作于点H,在平行四边形中,平行四边形的面积为:,图中黑色阴影部分的面积为:,故答案为:.【点睛】本题考查平行四边形的性质、扇形面积等知识,是基础考点,掌握相关知识是解题关键.4、90°【分析】先根据是的内接正六边形一边得,再根据圆周角性质得,再根据平行线的性质得,最后由三角形外角性质可得结论.【详解】解:∵是的内接正六边形一边∴∴∵∴∴ 故答案为90°【点睛】本题主要考查了正多边形与圆,圆周角定理等知识,熟练掌握相关定理是解答本题的关键5、##【分析】连接,取的中点,连接,由题可知点在以为圆心,为半径的圆上,当、、三点共线时,最小;求出,在中,,所以,即为所求.【详解】解:连接,取的中点,连接,,点在以为圆心,为半径的圆上,当、、三点共线时,最小,是直径,,,,,,在中,,,故答案为:.【点睛】本题考查点的运动轨迹,勾股定理,解题的关键是能够根据点的运动情况,确定点的运动轨迹.三、解答题1、(1)证明见解析;(2).【分析】(1)连接,只要证明即可.此题可运用三角形的中位线定理证,因为,所以.(2)根据直角三角形中角所对的直角边等于斜边的一半及勾股定理可分别求出的长和、的长,即可根据中位线性质求出的长,即的半径长.【详解】(1)证明:连接.因为是的中点,是的中点,,.,.,是圆的半径,是的切线.(2)如图,,,,,,且,,,且,∴,,,∴ ,的半径长为.【点睛】本题考查了切线的判定、直角三角形中角所对的直角边等于斜边的一半、勾股定理等知识.要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证它们垂直即可解决问题.2、(1)见解析;(2)17【分析】(1)由旋转的性质可得CD=CE,∠DCE=90°=∠ACB,由“SAS”可证△ACD≌△BCE;(2)由∠ACB=90°,AC=BC,可得∠CAB=∠CBA=45°,再由△ACD≌△BCE,得到BE=AD=5,∠CBE=∠CAD=45°,则∠ABE=∠ABC+∠CBE=90°,然后利用勾股定理求出BD的长即可得到答案.【详解】解:(1)证明:∵将线段CD绕点C按逆时针方向旋转90°得到线段CE,∴CD=CE,∠DCE=90°=∠ACB,∴∠ACD+∠BCD=∠BCE+∠BCD,即∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS);(2)∵∠ACB=90°,AC=BC,∴∠CAB=∠CBA=45°,∵△ACD≌△BCE,∴BE=AD=5,∠CBE=∠CAD=45°,∴∠ABE=∠ABC+∠CBE=90°,∴,∴AB=AD+BD=17.【点睛】本题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的性质,证明三角形全等是解题的关键.3、(1)45°(2)【分析】(1)连接OC,根据切线的性质得到OC⊥CD,根据圆周角定理得到∠DOC=2∠CAD,进而证明∠D=∠DOC,根据等腰直角三角形的性质求出∠D的度数;(2)根据等腰三角形的性质求出OC,根据弧长公式计算即可.(1)连接.∵ ,∴ ,即 .∵ ,∴ .∵ 是⊙的切线,∴ ,即 .∴ . ∴ .∴ .(2)∵ ,,∴ .∵ ,∴ .∴ 的长.【点睛】本题考查的是切线的性质、圆周角定理、弧长的计算,掌握圆的切线垂直于经过切点的半径是解题的关键.4、(1)见解析(2)【分析】(1)如图,连接OC,根据等腰三角形的性质可得∠CAB=∠ACO,即可得出∠FAC=∠ACO,可得AF//OC,根据平行线的性质可得∠AFC+∠OCF=180°,根据CF⊥AF可得∠OCF=90°,即可得出CF是⊙O的切线;(2)利用AAS可证明△AFC≌△AEC,可得S△AFC=S△AEC,根据垂径定理可得CE=DE,可得S△BCD=2S△BCE,根据AB是直径可得∠ACB=90°,根据角的和差关系可得∠BCE=∠CAB,根据正弦的定义可得,可得BE=,AB=,进而可得AE=,根据三角形面积公式即可得答案.(1)(1)如图,连接OC,∵OA=OC,∴∠CAB=∠ACO,∵∠FAC=∠BAC,∴∠FAC=∠ACO,∴AF//OC,∴∠AFC+∠OCF=180°,∵CF⊥AF,∴∠OCF=90°,即OC⊥CF,∴CF是⊙O的切线.(2)在△AFC和△AEC中,,∴△AFC≌△AEC,∴S△AFC=S△AEC,∵AB是⊙O的直径,CD⊥AB,∴CE=DE,∴S△BCD=2S△BCE,∵∠BCE+∠CBA=90°,∠CAB+∠CBA=90°,∴∠BCE=∠CBA,∵sin∠CAB=,∴sin∠CAB=sin∠BCE=,∴BE=,AB=,∴AE=,∴====.故答案为:【点睛】本题考查切线的判定、圆周角定理、垂径定理、全等三角形的判定与性质及三角函数的定义,经过半径的外端点,且垂直于这条半径的直线是圆的切线;直径所对的圆周角是90°;垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧;在直角三角形中,锐角的正弦是锐角的对边与斜边的比值;熟练掌握相关性质及判定定理是解题关键.5、(1),(2).【分析】(1)根据弦AB垂直平分半径OC,OC=OB=10cm,得出OD=CD=,∠ODB=90°,根据勾股定理,可求AB=2BD=2×;(2)根据锐角三角函数定义求出cos∠DOB=,得出∠DOB=60°,利用弧长公式求出即可.【详解】解:(1)∵弦AB垂直平分半径OC,OC=OB=10cm,∴OD=CD=,∠ODB=90°,∴,∴AB=2BD=2×,故答案为;(2)cos∠DOB=,∴∠DOB=60°,∴的度数为2×60°=120°,∴.【点睛】本题考查垂直平分线性质,勾股定理,锐角三角函数,弧长,掌握垂直平分线性质,勾股定理,锐角三角函数,弧长是解题关键.
相关试卷
这是一份初中数学沪科版九年级下册第24章 圆综合与测试巩固练习,共30页。试卷主要包含了下列说法正确的个数有等内容,欢迎下载使用。
这是一份沪科版九年级下册第24章 圆综合与测试一课一练,共28页。
这是一份初中数学沪科版九年级下册第24章 圆综合与测试综合训练题,共33页。试卷主要包含了下列判断正确的个数有,下列图形中,是中心对称图形的是等内容,欢迎下载使用。
![文档详情页底部广告位](http://m.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)