所属成套资源:高考数学(文数)二轮专题突破训练卷 (教师版+学生版)
高考数学(文数)二轮专题突破训练21《不等式选讲》 (教师版)
展开
这是一份高考数学(文数)二轮专题突破训练21《不等式选讲》 (教师版),共7页。试卷主要包含了能力突破训练,思维提升训练等内容,欢迎下载使用。
专题能力训练21 不等式选讲(选修4—5)一、能力突破训练1.若a>0,b>0,且.(1)求a3+b3的最小值;(2)是否存在a,b,使得2a+3b=6?并说明理由. 2.设函数f(x)=+|x-a|(a>0).(1)证明:f(x)≥2;(2)若f(3)<5,求a的取值范围. 3.已知关于x的不等式m-|x-2|≥1,其解集为[0,4].(1)求m的值;(2)若a,b均为正实数,且满足a+b=m,求a2+b2的最小值. 4.已知函数f(x)=,M为不等式f(x)<2的解集.(1)求M;(2)证明:当a,b∈M时,|a+b|<|1+ab|. 5.已知f(x)=|x+1|-|ax-1|.(1)当a=1时,求不等式f(x)>1的解集;(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围. 二、思维提升训练6.已知函数f(x)=g(x)=af(x)-|x-2|,a∈R.(1)当a=0时,若g(x)≤|x-1|+b对任意x∈(0,+∞)恒成立,求实数b的取值范围;(2)当a=1时,求函数y=g(x)的最小值. 7.已知函数f(x)=|x-3|-|x-a|.(1)当a=2时,解不等式f(x)≤-;(2)若存在实数a,使得不等式f(x)≥a成立,求实数a的取值范围. 8.已知函数f(x)=-x2+ax+4,g(x) =|x+1|+|x-1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[-1,1],求a的取值范围.
专题能力训练21 不等式选讲(选修4—5)一、能力突破训练1.解 (1)由,得ab≥2,且当a=b=时等号成立.故a3+b3≥2≥4,且当a=b=时等号成立.所以a3+b3的最小值为4.(2)由(1)知,2a+3b≥2≥4.由于4>6,从而不存在a,b,使得2a+3b=6.2.(1)证明 由a>0,有f(x)=+|x-a|≥+a≥2.故f(x)≥2.(2)解 f(3)=+|3-a|.当a>3时,f(3)=a+,由f(3)<5,得3<a<.当0<a≤3时,f(3)=6-a+,由f(3)<5,得<a≤3.综上,a的取值范围是.3.解 (1)不等式m-|x-2|≥1可化为|x-2|≤m-1,∴1-m≤x-2≤m-1,即3-m≤x≤m+1.∵其解集为[0,4],∴m=3.(2)由(1)知a+b=3.(方法一:利用基本不等式)∵(a+b)2=a2+b2+2ab≤(a2+b2)+(a2+b2)=2(a2+b2),∴a2+b2≥,当且仅当a=b=时取等号,∴a2+b2的最小值为.(方法二:消元法求二次函数的最值)∵a+b=3,∴b=3-a,∴a2+b2=a2+(3-a)2=2a2-6a+9=2,∴a2+b2的最小值为.4.(1)解 f(x)=当x≤-时,由f(x)<2得-2x<2,解得x>-1;当-<x<时,f(x)<2;当x≥时,由f(x)<2得2x<2,解得x<1.所以f(x)<2的解集M={x|-1<x<1}.(2)证明 由(1)知,当a,b∈M时,-1<a<1,-1<b<1,从而(a+b)2-(1+ab)2=a2+b2-a2b2-1=(a2-1)(1-b2)<0.因此|a+b|<|1+ab|.5.解 (1)当a=1时,f(x)=|x+1|-|x-1|,即f(x)=故不等式f(x)>1的解集为.(2)当x∈(0,1)时|x+1|-|ax-1|>x成立等价于当x∈(0,1)时|ax-1|<1成立.若a≤0,则当x∈(0,1)时|ax-1|≥1;若a>0,|ax-1|<1的解集为0<x<,所以≥1,故0<a≤2.综上,a的取值范围为(0,2].二、思维提升训练6.解 (1)当a=0时,g(x)=-|x-2|(x>0),g(x)≤|x-1|+b⇔-b≤|x-1|+|x-2|.|x-1|+|x-2|≥|(x-1)-(x-2)|=1,当且仅当1≤x≤2时等号成立.故实数b的取值范围是[-1,+∞).(2)当a=1时,g(x)=当0<x<1时,g(x)=+x-2>2-2=0;当x≥1时,g(x)≥0,当且仅当x=1时等号成立;故当x=1时,函数y=g(x)取得最小值0.7.解 (1)∵a=2,∴f(x)=|x-3|-|x-2|=∴f(x)≤-等价于解得≤x<3或x≥3,∴不等式的解集为.(2)由不等式性质可知f(x)=|x-3|-|x-a|≤|(x-3)-(x-a)|=|a-3|,∴若存在实数x,使得不等式f(x)≥a成立,则|a-3|≥a,解得a≤.∴实数a的取值范围是.8.解 (1)当a=1时,不等式 f(x)≥g(x)等价于x2-x+|x+1|+|x-1|-4≤0. ①当x<-1时,①式化为x2-3x-4≤0,无解;当-1≤x≤1时,①式化为x2-x-2≤0,从而-1≤x≤1;当x>1时,①式化为x2+x-4≤0,从而1<x≤.所以f(x)≥g(x)的解集为.(2)当x∈[-1,1]时,g(x)=2.所以f(x)≥g(x)的解集包含[-1,1],等价于当x∈[-1,1]时f(x)≥2.又f(x)在[-1,1]的最小值必为f(-1)与f(1)之一,所以f(-1)≥2且f(1)≥2,得-1≤a≤1.所以a的取值范围为[-1,1].
相关试卷
这是一份高考数学(文数)二轮复习解答题通关练习08《不等式选讲》(教师版),共2页。
这是一份高考数学(理数)二轮复习专题强化训练22《不等式选讲》 (教师版),共5页。试卷主要包含了已知函数f=|ax-1|-x.,已知函数f=|2x+3a2|.,已知函数f=x2-|x|+1.等内容,欢迎下载使用。
这是一份高考数学(文数)二轮专题突破训练21《不等式选讲》 (学生版),共4页。试卷主要包含了能力突破训练,思维提升训练等内容,欢迎下载使用。