终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年基础强化沪科版九年级数学下册第24章圆定向测评试题(无超纲)

    立即下载
    加入资料篮
    2021-2022学年基础强化沪科版九年级数学下册第24章圆定向测评试题(无超纲)第1页
    2021-2022学年基础强化沪科版九年级数学下册第24章圆定向测评试题(无超纲)第2页
    2021-2022学年基础强化沪科版九年级数学下册第24章圆定向测评试题(无超纲)第3页
    还剩29页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学九年级下册第24章 圆综合与测试复习练习题

    展开

    这是一份数学九年级下册第24章 圆综合与测试复习练习题,共32页。
    沪科版九年级数学下册第24章圆定向测评
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、的边经过圆心,与圆相切于点,若,则的大小等于( )

    A. B. C. D.
    2、如图,点A、B、C在上,,则的度数是( )

    A.100° B.50° C.40° D.25°
    3、下列叙述正确的有( )个.
    (1)随着的增大而增大;
    (2)如果直角三角形斜边的长是斜边上的高的4倍,那么这个三角形两个锐角的度数分别是和;
    (3)斜边为的直角三角形顶点的轨迹是以中点为圆心,长为直径的圆;
    (4)三角形三边的垂直平分线的交点到三角形三个顶点的距离相等;
    (5)以为三边长度的三角形,不是直角三角形.
    A.0 B.1 C.2 D.3
    4、往直径为78cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽,则水的最大深度为( )

    A.36 cm B.27 cm C.24 cm D.15 cm
    5、利用定理“同弧所对圆心角是圆周角的两倍”,可以直接推导出的命题是( )
    A.直径所对圆周角为 B.如果点在圆上,那么点到圆心的距离等于半径
    C.直径是最长的弦 D.垂直于弦的直径平分这条弦
    6、在直径为10cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽cm,则水的最大深度为( )

    A.1cm B.2cm C.3cm D.4cm
    7、某村东西向的废弃小路/两侧分别有一块与l距离都为20 m的宋代碑刻A,B,在小路l上有一座亭子P. A,P分别位于B的西北方向和东北方向,如图所示.该村启动“建设幸福新农村”项目,计划挖一个圆形人工湖,综合考虑景观的人文性、保护文物的要求、经费条件等因素,需将碑刻A,B原址保留在湖岸(近似看成圆周)上,且人工湖的面积尽可能小.人工湖建成后,亭子P到湖岸的最短距离是( )

    A.20 m B.20m
    C.(20 - 20)m D.(40 - 20)m
    8、小明将图案绕某点连续旋转若干次,每次旋转相同角度,设计出一个外轮廓为正六边形的图案(如图),则可以为( )

    A.30° B.60°
    C.90° D.120°
    9、若的圆心角所对的弧长是,则此弧所在圆的半径为( )
    A.1 B.2 C.3 D.4
    10、下列图案中既是轴对称图形,又是中心对称图形的是( )
    A. B.
    C. D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,P是正方形ABCD内一点,将绕点B顺时针方向旋转,能与重合,若,则______.

    2、如图,在⊙O中,=,AB=10,BC=12,D是上一点,CD=5,则AD的长为______.

    3、如图,PA,PB分别切⊙O于点A,B,Q是优弧上一点,若∠P=40°,则∠Q的度数是________.

    4、如图,在⊙O中,∠BOC=80°,则∠A=___________°.

    5、如图,在ABC中,∠C=90°,AB=10,在同一平面内,点O到点A,B,C的距离均等于a(a为常数).那么常数a的值等于________.

    三、解答题(5小题,每小题10分,共计50分)
    1、定理:一条弧所对的圆周角等于这条弧所对的圆心角的一半.如图1,∠A=∠O.
    已知:如图2,AC是⊙O的一条弦,点D在⊙O上(与A、C不重合),联结DE交射线AO于点E,联结OD,⊙O的半径为5,tan∠OAC=.

    (1)求弦AC的长.
    (2)当点E在线段OA上时,若△DOE与△AEC相似,求∠DCA的正切值.
    (3)当OE=1时,求点A与点D之间的距离(直接写出答案).
    2、如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(与A、B不重合),连接CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连接DE、BE
    (1)求证:△ACD≌△BCE;
    (2)若BE=5,DE=13,求AB的长

    3、如图1,在中,,,点,分别在边,上,,连接,,.点在线段上,连接交于点.

    (1)①比较与的大小,并证明;
    ②若,求证:;
    (2)将图1中的绕点逆时针旋转,如图2.若是的中点,判断是否仍然成立.如果成立,请证明;如果不成立,请说明理由.
    4、新定义:如图①,已知,在内部画射线OC,得到三个角,分别为、、.若这三个角中有一个角是另外一个角的2倍,则称射线OC为的“幸运线”.(本题中所研究的角都是大于0°而小于180°的角.)

    (阅读理解)(1)角的平分线______这个角的“幸运线”;(填“是”或“不是”)
    (初步应用)(2)如图①,,射线OC为的“幸运线”,则的度数为______;(直接写出答案)
    (解决问题)
    (3)如图②,已知,射线OM从OA出发,以每秒10°的速度绕O点顺时针旋转,同时,射线ON从OB出发,以每秒15°的速度绕O点顺时针旋转,设运动的时间为t秒.若OM、ON、OB三条射线中,一条射线恰好是以另外两条射线为边的角的“幸运线”,求运动的时间t的值.
    (实际运用)
    (4)周末,小丽帮妈妈到附近的“中通快递”网点取包裹,出家门时小丽看了看时钟,恰好是下午3点整,取好包裹回到家时,小丽再看了看时钟,还没有到下午3点半,但此时分针与时针恰好重合.问小丽帮妈妈取包裹用了多少分钟?
    5、如图,抛物线y=-+x+2与x轴负半轴交于点A,与y轴交于点B.
    (1)求A,B两点的坐标;
    (2)如图1,点C在y轴右侧的抛物线上,且AC=BC,求点C的坐标;
    (3)如图2,将△ABO绕平面内点P顺时针旋转90°后,得到△DEF(点A,B,O的对应点分别是点D,E,F),D,E两点刚好在抛物线上.
    ①求点F的坐标;
    ②直接写出点P的坐标.


    -参考答案-
    一、单选题
    1、A
    【分析】
    连接,根据圆周角定理求出,根据切线的性质得到,根据直角三角形的性质计算,得到答案.
    【详解】
    解:连接,



    与圆相切于点,


    故选:A.
    【点睛】
    本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.
    2、C
    【分析】
    先根据圆周角定理求出∠AOB的度数,再由等腰三角形的性质即可得出结论.
    【详解】
    ∵∠ACB=50°,
    ∴∠AOB=100°,
    ∵OA=OB,
    ∴∠OAB=∠OBA= 40°,
    故选:C.
    【点睛】
    本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
    3、D
    【分析】
    根据反比例函数的性质,得当或者时,随着的增大而增大;根据直径所对圆周角为直角的性质,得斜边为的直角三角形顶点的轨迹是以中点为圆心,长为直径的圆;根据垂直平分线的性质,得三角形三边的垂直平分线的交点到三角形三个顶点的距离相等;根据勾股定理逆定理、完全平方公式的性质计算,可判断直角三角形,即可完成求解.
    【详解】
    当或者时,随着的增大而增大,故(1)不正确;
    如果直角三角形斜边的长是斜边上的高的4倍,那么这个三角形两个锐角的度数分别是和;,故(2)正确;
    ∵圆的直径所对的圆周角为直角
    ∴斜边为的直角三角形顶点A的轨迹是以中点为圆心,长为直径的圆,故(3)正确;
    三角形三边的垂直平分线的交点到三角形三个顶点的距离相等,故(4)正确;


    ∴以为三边长度的三角形,是直角三角形,故(5)错误;
    故选:D.
    【点睛】
    本题考查了三角形、垂直平分线、反比例函数、圆、勾股定理逆定理的知识;解题的关键是熟练掌握反比例函数、垂直平分线、圆周角、勾股定理逆定理的性质,从而完成求解.
    4、C
    【分析】
    连接,过点作于点,交于点,先由垂径定理求出的长,再根据勾股定理求出的长,进而得出的长即可.
    【详解】
    解:连接,过点作于点,交于点,如图所示:

    则,
    的直径为,

    在中,,

    即水的最大深度为,
    故选:C.
    【点睛】
    本题考查了垂径定理、勾股定理等知识,解题的关键是根据题意作出辅助线,构造出直角三角形是解答此题的关键.
    5、A
    【分析】
    定理“同弧所对圆心角是圆周角的两倍”是圆周角定理,分析各个选项即可.
    【详解】
    A选项,直径所在的圆心角是180°,直接可以由圆周角定理推导出:直径所对的圆周角为,A选项符合要求;
    B、C选项,根据圆的定义可以得到;
    D选项,是垂径定理;
    故选:A
    【点睛】
    本题考查圆的基本性质,熟悉圆周角定理及其推论是解题的关键.
    6、B
    【分析】
    连接OB,过点O作OC⊥AB于点D,交⊙O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而得出CD的长即可.
    【详解】
    解:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,如图所示:

    ∵AB=8cm,
    ∴BD=AB=4(cm),
    由题意得:OB=OC==5cm,
    在Rt△OBD中,OD=(cm),
    ∴CD=OC-OD=5-3=2(cm),
    即水的最大深度为2cm,
    故选:B.
    【点睛】
    本题考查了垂径定理、勾股定理等知识;根据题意作出辅助线,构造出直角三角形是解答此题的关键.
    7、D
    【分析】
    根据人工湖面积尽量小,故圆以AB为直径构造,设圆心为O,当O,P共线时,距离最短,计算即可.
    【详解】
    ∵人工湖面积尽量小,

    ∴圆以AB为直径构造,设圆心为O,
    过点B作BC ⊥,垂足为C,
    ∵A,P分别位于B的西北方向和东北方向,
    ∴∠ABC=∠PBC=∠BOC=∠BPC=45°,
    ∴OC=CB=CP=20,
    ∴OP=40,OB==,
    ∴最小的距离PE=PO-OE=40 - 20(m),
    故选D.
    【点睛】
    本题考查了圆的基本性质,方位角的意义,等腰直角三角形的判定和性质,勾股定理,熟练掌握圆中点圆的最小距离是解题的关键.
    8、B
    【分析】
    由题意依据每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360°进行分析即可得出答案.
    【详解】
    解:因为每次旋转相同角度,旋转了六次,
    且旋转了六次刚好旋转了一周为360°,
    所以每次旋转相同角度 .
    故选:B.
    【点睛】
    本题考查旋转的性质,解题的关键是能够找到旋转中心,从而确定旋转角的度数.
    9、C
    【分析】
    先设半径为r,再根据弧长公式建立方程,解出r即可
    【详解】
    设半径为r,
    则周长为2πr,
    120°所对应的弧长为
    解得r=3
    故选C
    【点睛】
    本题考查弧长计算,牢记弧长公式是本题关键.
    10、B
    【分析】
    根据中心对称图形与轴对称图形的概念逐项分析
    【详解】
    解:A. 是轴对称图形,不是中心对称图形,故该选项不正确,不符合题意;
    B. 既是轴对称图形,又是中心对称图形,故该选项正确,符合题意;
    C. 不是轴对称图形,是中心对称图形,故该选项不正确,不符合题意;
    D. 不是轴对称图形,是中心对称图形,故该选项不正确,不符合题意;
    故选B
    【点睛】
    本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合,掌握中心对称图形与轴对称图形的概念是解题的关键.
    二、填空题
    1、
    【分析】
    根据旋转角相等可得,进而勾股定理求解即可
    【详解】
    解:四边形是正方形

    将绕点B顺时针方向旋转,能与重合,


    故答案为:
    【点睛】
    本题考查了旋转的性质,勾股定理,求得旋转角相等且等于90°是解题的关键.
    2、3
    【分析】
    过A作AE⊥BC于E,过C作CF⊥AD于F,根据圆周角定理可得∠ACB=∠B=∠D,AB=AC=10,再由等腰三角形的性质可知BE=CE=6,根据相似三角形的判定证明△ABE∽△CDF,由相似三角形的性质和勾股定理分别求得AE、DF、CF, AF即可求解.
    【详解】
    解:过A作AE⊥BC于E,过C作CF⊥AD于F,则∠AEB=∠CFD=90°,
    ∵=, AB=10,
    ∴∠ACB=∠B=∠D,AB=AC=10,
    ∵AE⊥BC,BC=12,
    ∴BE=CE=6,
    ∴,
    ∵∠B=∠D,∠AEB=∠CFD=90°,
    ∴△ABE∽△CDF,
    ∴,
    ∵AB=10,CD=5,BE=6,AE=8,
    ∴,
    解得:DF=3,CF=4,
    在Rt△AFC中,∠AFC=90°,AC=10,CF=4,
    则,
    ∴AD=DF+AF=3+2,
    故答案为:3+2.

    【点睛】
    本题考查圆周角定理、等腰三角形的性质、相似三角形的判定与性质、勾股定理,熟练掌握圆周角定理和相似三角形的判定与性质是解答的关键.
    3、70°度
    【分析】
    连接OA、OB,根据切线性质可得∠OAP=∠OBP=90°,再根据四边形的内角和为360°求得∠AOB,然后利用圆周角定理求解即可.
    【详解】
    解:连接OA、OB,
    ∵PA,PB分别切⊙O于点A,B,
    ∴∠OAP=∠OBP=90°,又∠P=40°,
    ∴∠AOB=360°-90°-90°-40°=140°,
    ∴∠Q=∠AOB=70°,
    故答案为:70°.

    【点睛】
    本题考查切线性质、四边形内角和为360°、圆周角定理,熟练掌握切线性质和圆周角定理是解答的关键.
    4、40°度
    【分析】
    直接根据圆周角定理即可得出结论.
    【详解】
    解:与是同弧所对的圆心角与圆周角,,

    故答案为:.
    【点睛】
    本题考查的是圆周角定理,解题的关键是熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
    5、5
    【分析】
    直接利用直角三角形斜边上的中线等于斜边的一半即可求解.
    【详解】
    解:根据直角三角形斜边上的中线等于斜边的一半,
    即可知道点到点A,B,C的距离相等,
    如下图:



    故答案是:5.
    【点睛】
    本题考查了直角三角形的外接圆的外心,解题的关键是掌握直角三角形斜边上的中线等于斜边的一半即可求解.
    三、解答题
    1、
    (1)8
    (2)
    (3)或.
    【分析】
    (1)过点O作OH⊥AC于点H,由垂径定理可得AH=CH=AC,由锐角三角函数和勾股定理可求解;
    (2)分两种情况讨论,由相似三角形的性质可求AG,EG,CG的长,即可求解;
    (3)分两种情况讨论,由相似三角形和勾股定理可求解.
    (1)
    如图2,过点O作OH⊥AC于点H,

    由垂径定理得:AH=CH=AC,
    在Rt△OAH中,,
    ∴设OH=3x,AH=4x,
    ∵OH2+AH2=OA2,
    ∴(3x)2+(4x)2=52,
    解得:x=±1,(x=﹣1舍去),
    ∴OH=3,AH=4,
    ∴AC=2AH=8;
    (2)
    如图2,过点O作OH⊥AC于H,过E作EG⊥AC于G,

    ∵∠DEO=∠AEC,
    ∴当△DOE与△AEC相似时可得:∠DOE=∠A或者∠DOE=∠ACD;


    ∴∠ACD≠∠DOE
    ∴当△DOE与△AEC相似时,不存在∠DOE=∠ACD情况,
    ∴当△DOE与△AEC相似时,∠DOE=∠A,
    ∴OD∥AC,
    ∴,
    ∵OD=OA=5,AC=8,
    ∴,
    ∴,
    ∵∠AGE=∠AHO=90°,
    ∴GE∥OH,

    ∴△AEG∽△AOH,
    ∴,
    ∴,
    ∴,
    ∴,,
    在Rt△CEG中,;
    (3)
    当点E在线段OA上时,如图3,过点E作EG⊥AC于G,过点O作OH⊥AC于H,延长AO交⊙O于M,连接AD,DM,

    由(1)可得 OH=3,AH=4,AC=8,
    ∵OE=1,
    ∴AE=4,ME=6,
    ∵EG∥OH,
    ∴△AEG∽△AOH,
    ∴,
    ∴AG=,EG=,
    ∴GC=,
    ∴EC===,
    ∵AM是直径,
    ∴∠ADM=90°=∠EGC,
    又∵∠M=∠C,
    ∴△EGC∽△ADM,
    ∴,
    ∴,
    ∴AD=2;
    当点E在线段AO的延长线上时,如图4,延长AO交⊙O于M,连接AD,DM,过点E作EG⊥AC于G,

    同理可求EG=,AG=,AE=6,GC=,
    ∴EC===,
    ∵AM是直径,
    ∴∠ADM=90°=∠EGC,
    又∵∠M=∠C,
    ∴△EGC∽△ADM,
    ∴,
    ∴,
    ∴AD=,
    综上所述:AD的长是或
    【点睛】
    本题考查了垂径定理,勾股定理,解直角三角形,求角的正切值,相似三角形的性质与判定,圆周角定理,正切的作出辅助线是解题的关键.
    2、(1)见解析;(2)17
    【分析】
    (1)由旋转的性质可得CD=CE,∠DCE=90°=∠ACB,由“SAS”可证△ACD≌△BCE;
    (2)由∠ACB=90°,AC=BC,可得∠CAB=∠CBA=45°,再由△ACD≌△BCE,得到BE=AD=5,∠CBE=∠CAD=45°,则∠ABE=∠ABC+∠CBE=90°,然后利用勾股定理求出BD的长即可得到答案.
    【详解】
    解:(1)证明:∵将线段CD绕点C按逆时针方向旋转90°得到线段CE,
    ∴CD=CE,∠DCE=90°=∠ACB,
    ∴∠ACD+∠BCD=∠BCE+∠BCD,即∠ACD=∠BCE,
    在△ACD和△BCE中,

    ∴△ACD≌△BCE(SAS);
    (2)∵∠ACB=90°,AC=BC,
    ∴∠CAB=∠CBA=45°,
    ∵△ACD≌△BCE,
    ∴BE=AD=5,∠CBE=∠CAD=45°,
    ∴∠ABE=∠ABC+∠CBE=90°,
    ∴,
    ∴AB=AD+BD=17.

    【点睛】
    本题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的性质,证明三角形全等是解题的关键.
    3、(1)①∠CAE=∠CBD,理由见解析;②证明见解析;(2)AE=2CF仍然成立,理由见解析
    【分析】
    (1)①只需要证明△CAE≌△CBD即可得到∠CAE=∠CBD;
    ②先证明∠CAH=∠BCF,然后推出∠BDC=∠FCD,∠CAE=∠CBD=∠BCF,得到CF=DF,CF=BF,则BD=2CF,再由△CAE≌△CBD,即可得到AE=2BD=2CF;
    (2)如图所示延长DC到G使得,DC=CG,连接BG,只需要证明△ACE≌△BCG得到AE=BG,再由CF是△BDG的中位线,得到BG=2CF,即可证明AE=2CF.
    【详解】
    解:(1)①∠CAE=∠CBD,理由如下:
    在△CAE和△ CBD中,

    ∴△CAE≌△CBD(SAS),
    ∴∠CAE=∠CBD;
    ②∵CF⊥AE,
    ∴∠AHC=∠ACB=90°,
    ∴∠CAH+∠ACH=∠ACH+∠BCF=90°,
    ∴∠CAH=∠BCF,
    ∵∠DCF+∠BCF=90°,∠CDB+∠CBD=90°,∠CAE=∠CBD,
    ∴∠BDC=∠FCD,∠CAE=∠CBD=∠BCF,
    ∴CF=DF,CF=BF,
    ∴BD=2CF,
    又∵△CAE≌△CBD,
    ∴AE=2BD=2CF;
    (2)AE=2CF仍然成立,理由如下:
    如图所示延长DC到G使得,DC=CG,连接BG,
    由旋转的性质可得,∠DCE=∠ACB=90°,
    ∴∠ACD+∠BCD=∠BCE+∠BCD,∠ECG=90°,
    ∴∠ACD=∠BCE,
    ∴∠ACD+∠DCE=∠BCE+∠ECG,即∠ACE=∠BCG,
    又∵CE=CD=CG,AC=BC,
    ∴△ACE≌△BCG(SAS),
    ∴AE=BG,
    ∵F是BD的中点,CD=CG,
    ∴CF是△BDG的中位线,
    ∴BG=2CF,
    ∴AE=2CF.

    【点睛】
    本题主要考查了全等三角形的性质与判定,等腰三角形的性质与判定,旋转的性质,三角形中位线定理,熟知全等三角形的性质与判定条件是解题的关键.
    4、(1)是;(2)16°或24°或32°;(3)2或或;(4).
    【分析】
    (1)根据幸运线定义即可求解;
    (2)分3种情况,根据幸运线定义得到方程求解即可;
    (3)根据幸运线定义得到方程求解即可;
    (4)利用时针1分钟走,分针1分钟走,可解答问题.
    【详解】
    解:(1)一个角的平分线是这个角的“幸运线”;
    故答案为:是;
    (2)①设∠AOC=x,则∠BOC=2x,
    由题意得,x+2x=48°,解得x=16°,
    ②设∠AOC=x,则∠BOC=x,
    由题意得,x+x=48°,解得x=24°,
    ③设∠AOC=x,则∠BOC=x,
    由题意得,x+x=48°,解得x=32°,
    故答案为:16°或24°或32°;
    (3)OB是射线OM与ON的幸运线,
    则∠BOM=∠MON,即50-10t=(50-10t+15t),解得t=2;
    ∠BOM=∠MON,即50-10t=(50-10t+15t),解得t=;
    ∠BOM=∠MON,即50-10t=(50-10t+15t),解得t=;
    故t的值是2或或;
    (4)时针1分钟走,分针1分钟走,
    设小丽帮妈妈取包裹用了x分钟,
    则有0.5x+3×30=6x,解得:x=.
    【点睛】
    本题考查了旋转的性质,幸运线定义,学生的阅读理解能力及知识的迁移能力.理解“幸运线”的定义是解题的关键.
    5、(1)A(-1,0),B(0,2);(2)点C的坐标(,);(3)①求点F的坐标(1,2);②点P的坐标(,)
    【分析】
    (1)令x=0,求得y值,得点B的坐标;令y=0,求得x的值,取较小的一个即求A点的坐标;
    (2)设C的坐标为(x,-+x+2),根据AC=BC,得到,令t=-+x,解方程即可;
    (3)①根据题意,得∠BPE=90°,PB=PE即点P在线段BE的垂直平分线上,根据B,E都在抛物线上,则B,E是对称点,从而确定点P在抛物线的对称轴上,点F在BE上,且BE∥x轴,点E(3,2),确定BE=3,根据旋转性质,得EF=BO=2,从而确定点F的坐标;
    ②根据BE=3,∠BPE=90°,PB=PE,确定P到BE的距离,即可写出点P的坐标.
    【详解】
    (1)令x=0,得y=2,
    ∴点B的坐标为B(0,2);
    令y=0,得-+x+2=0,
    解得
    ∵点A在x轴的负半轴;
    ∴A点的坐标(-1,0);
    (2)设C的坐标为(x,-+x+2),
    ∵AC=BC,A(-1,0),B(0,2),
    ∴,
    ∵A(-1,0),B(0,2),
    ∴,
    即,
    设t=-+x,
    ∴,
    ∴,
    ∴,
    ∴,
    整理,得,
    解得
    ∵点C在y轴右侧的抛物线上,
    ∴,
    此时y=,
    ∴点C的坐标(,);
    (3)①如图,根据题意,得∠BPE=90°,PB=PE即点P在线段BE的垂直平分线上,

    ∵B,E都在抛物线上,
    ∴B,E是对称点,
    ∴点P在抛物线的对称轴上,点F在BE上,且BE∥x轴,
    ∵抛物线的对称轴为直线x=,B(0,2),
    ∴点E(3,2),BE=3,
    ∵EF=BO=2,
    ∴BF=1,
    ∴点F的坐标为(1,2);
    ②如图,设抛物线的对称轴与BE交于点M,交x轴与点N,
    ∵BE=3,
    ∴BM=,
    ∵∠BPE=90°,PB=PE,
    ∴PM=BM=,
    ∴PM=BM=,
    ∴PN=2-=,
    ∴点P的坐标为(,).
    【点睛】
    本题考查了抛物线与坐标轴的交点,旋转的性质,两点间的距离公式,一元二次方程的解法,换元法解方程,熟练掌握抛物线的对称性,灵活理解旋转的意义,熟练解一元二次方程是解题的关键.

    相关试卷

    沪科版九年级下册第24章 圆综合与测试一课一练:

    这是一份沪科版九年级下册第24章 圆综合与测试一课一练,共25页。试卷主要包含了在圆内接四边形ABCD中,∠A,已知⊙O的半径为4,,则点A在等内容,欢迎下载使用。

    数学第24章 圆综合与测试课时练习:

    这是一份数学第24章 圆综合与测试课时练习,共28页。

    数学九年级下册第24章 圆综合与测试同步测试题:

    这是一份数学九年级下册第24章 圆综合与测试同步测试题,共32页。试卷主要包含了下列叙述正确的有个.,下列判断正确的个数有等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map