


2021学年第24章 圆综合与测试课堂检测
展开
这是一份2021学年第24章 圆综合与测试课堂检测,共29页。试卷主要包含了点P关于原点对称的点的坐标是,已知⊙O的半径为4,,则点A在等内容,欢迎下载使用。
沪科版九年级数学下册第24章圆定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,的半径为6,将劣弧沿弦翻折,恰好经过圆心O,点C为优弧上的一个动点,则面积的最大值是( )A. B. C. D.2、下列图形中,既是中心对称图形也是轴对称图形的是( )A. B. C. D.3、下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.4、如图,AB,CD是⊙O的弦,且,若,则的度数为( )A.30° B.40° C.45° D.60°5、下列各点中,关于原点对称的两个点是( )A.(﹣5,0)与(0,5) B.(0,2)与(2,0)C.(﹣2,﹣1)与(﹣2,1) D.(2,﹣1)与(﹣2,1)6、平面直角坐标系中点关于原点对称的点的坐标是( )A. B. C. D.7、如图,为的直径,为外一点,过作的切线,切点为,连接交于,,点在右侧的半圆周上运动(不与,重合),则的大小是( )A.19° B.38° C.52° D.76°8、点P(-3,1)关于原点对称的点的坐标是( )A.(-3,1) B.(3,1) C.(3,-1) D.(-3,-1)9、已知⊙O的半径为4,,则点A在( )A.⊙O内 B.⊙O上 C.⊙O外 D.无法确定10、如图,ABC中,∠ACB=90°,∠ABC=40°.将ABC绕点B逆时针旋转得到,使点C的对应点恰好落在边AB上,则的度数是( )A.50° B.70° C.110° D.120°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图所示是一个圆锥在某平面上的正投影,则该圆锥的侧面积是________2、如图,一次函数的图象与x轴交于点A,与y轴交于点B,作的外接圆,则图中阴影部分的面积为______.(结果保留π)3、如图,与x轴交于、两点,,点P是y轴上的一个动点,PD切于点D,则△ABD的面积的最大值是________;线段PD的最小值是________.4、如图,过⊙O外一点P,作射线PA,PB分别切⊙O于点A,B,,点C在劣弧AB上,过点C作⊙O的切线分别与PA,PB交于点D,E.则______度.5、一条弧所对的圆心角为,弧长等于,则这条弧的半径为________.三、解答题(5小题,每小题10分,共计50分)1、如图,AB为⊙O的切线,B为切点,过点B作BC⊥OA,垂足为点E,交⊙O于点C,连接CO并延长CO与AB的延长线交于点D,连接AC.(1)求证:AC为⊙O的切线;(2)若⊙O半径为2,OD=4.求线段AD的长.2、正方形绿化场地拟种植两种不同颜色(用阴影部分和非阴影部分表示)的花卉,要求种植的花卉能组成轴对称或中心对称图案,下面是三种不同设计方案中的一部分.(1)请把图①、图②补成既是轴对称图形,又是中心对称图形,并画出一条对称轴;(2)把图③补成只是中心对称图形,并把中心标上字母P.3、问题:如图,是的直径,点在内,请仅用无刻度的直尺,作出中边上的高.小芸解决这个问题时,结合圆以及三角形高线的相关知识,设计了如下作图过程.作法:如图,①延长交于点,延长交于点;②分别连接,并延长相交于点;③连接并延长交于点.所以线段即为中边上的高.(1)根据小芸的作法,补全图形;(2)完成下面的证明.证明:∵是的直径,点,在上,∴________°.(______)(填推理的依据)∴,.∴,________是的两条高线.∵,所在直线交于点,∴直线也是的高所在直线.∴是中边上的高.4、如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为3,求BC的长.5、新定义:在平面直角坐标系xOy中,若几何图形G与⊙A有公共点,则称几何图形G为⊙A的关联图形,特别地,若⊙A的关联图形G为直线,则称该直线为⊙A的关联直线.如图1,∠M为⊙A的关联图形,直线l为⊙A的关联直线.(1)已知⊙O是以原点为圆心,2为半径的圆,下列图形:①直线y=2x+2;②直线y=﹣x+3;③双曲线y=,是⊙O的关联图形的是 (请直接写出正确的序号).(2)如图2,⊙T的圆心为T(1,0),半径为1,直线l:y=﹣x+b与x轴交于点N,若直线l是⊙T的关联直线,求点N的横坐标的取值范围.(3)如图3,已知点B(0,2),C(2,0),D(0,﹣2),⊙I经过点C,⊙I的关联直线HB经过点B,与⊙I的一个交点为P;⊙I的关联直线HD经过点D,与⊙I的一个交点为Q;直线HB,HD交于点H,若线段PQ在直线x=6上且恰为⊙I的直径,请直接写出点H横坐标h的取值范围. -参考答案-一、单选题1、C【分析】如图,过点C作CT⊥AB于点T,过点O作OH⊥AB于点H,交⊙O于点K,连接AO、AK,解直角三角形求出AB,求出CT的最大值,可得结论.【详解】解:如图,过点C作 CT⊥AB 于点T,过点O作OH⊥AB于点H,交⊙O于点K,连接AO、AK,由题意可得AB垂直平分线段OK,∴AO=AK,OH=HK=3,∵OA=OK,∴OA=OK=AK,∴∠OAK=∠AOK=60°,∴AH=OA×sin60°=6×=3,∵OH⊥AB,∴AH=BH,∴AB=2AH=6,∵OC+OH⩾CT,∴CT⩽6+3=9,∴CT的最大值为9,∴△ABC的面积的最大值为=27,故选:C.【点睛】本题考查垂径定理、三角函数、三角形的面积、垂线段最短等知识,解题的关键是求出CT的最大值,属于中考常考题型.2、A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、既是轴对称图形,也是中心对称图形,故此选项符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是中心对称图形,不是轴对称图形,故此选项不符合题意;D、是中心对称图形,不是轴对称图形,故此选项不符合题意.故选:A.【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.3、B【详解】解:A.是轴对称图形,不是中心对称图形,故不符合题意;B.既是轴对称图形,又是中心对称图形,故符合题意;C.不是轴对称图形,是中心对称图形,故不符合题意;D.是轴对称图形,不是中心对称图形,故不符合题意.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.4、B【分析】由同弧所对的圆周角是圆心角的一半可得,利用平行线的性质:两直线平行,内错角相等即可得.【详解】解:∵,∴,∵,∴,故选:B.【点睛】题目主要考查圆周角定理,平行线的性质等,理解题意,找出相关的角度是解题关键.5、D【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:A、(﹣5,0)与(0,5)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故A错误;B、(0,2)与(2,0)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故B错误;C、(﹣2,﹣1)与(﹣2,1)关于x轴对称,故C错误;D、关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,故D正确;故选:D.【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.6、B【分析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解.【详解】解:平面直角坐标系中点关于原点对称的点的坐标是故选B【点睛】本题考查了关于原点对称的点的特征,掌握关于原点对称的两个点,横坐标、纵坐标分别互为相反数是解题的关键.7、B【分析】连接 由为的直径,求解 结合为的切线,求解 再利用圆周角定理可得答案.【详解】解:连接 为的直径, 为的切线, 故选B【点睛】本题考查的是三角形的内角和定理,直径所对的圆周角是直角,圆周角定理,切线的性质定理,熟练运用以上知识逐一求解相关联的角的大小是解本题的关键.8、C【分析】据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(x,y),然后直接作答即可.【详解】解:根据中心对称的性质,可知:点P(3,1)关于原点O中心对称的点的坐标为(3,1).故选:C.【点睛】本题考查关于原点对称的点坐标的关系,是需要熟记的基本问题,记忆方法可以结合平面直角坐标系的图形.9、C【分析】根据⊙O的半径r=4,且点A到圆心O的距离d=5知d>r,据此可得答案.【详解】解:∵⊙O的半径r=4,且点A到圆心O的距离d=5,∴d>r,∴点A在⊙O外,故选:C.【点睛】本题主要考查点与圆的位置关系,点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔d>r;②点P在圆上⇔d=r;③点P在圆内⇔d<r.10、B【分析】根据旋转可得,,得.【详解】解:,,,将绕点逆时针旋转得到△,使点的对应点恰好落在边上,,,.故选:B.【点睛】本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质.二、填空题1、【分析】由勾股定理求得圆锥母线长为,再由圆锥的侧面积公式即可得出圆锥侧面积为.【详解】∵是一个圆锥在某平面上的正投影∴为等腰三角形∵AD⊥BC∴在中有即由圆锥侧面积公式有.故答案为:。【点睛】本题考查了计算圆锥的侧面积,若圆锥的底面半径为r,母线长为l,则这个扇形的半径为l,扇形的弧长为,圆锥的侧面积为.2、【分析】先求出A、B、C坐标,再证明三角形BOC是等边三角形,最后根据扇形面积公式计算即可.【详解】过C作CD⊥OA于D∵一次函数的图象与x轴交于点A,与y轴交于点B,∴当时,,B点坐标为(0,1)当时,,A点坐标为∴∵作的外接圆,∴线段AB中点C的坐标为,∴三角形BOC是等边三角形∴∵C的坐标为∴∴故答案为:【点睛】本题主要考查了一次函数的综合运用,求扇形面积.用已知点的坐标表示相应的线段是解题的关键.3、 【分析】根据题中点的坐标可得圆的直径,半径为1,分析以AB定长为底,点D在圆上,高最大为圆的半径,即可得出三角形最大的面积;连接AP,设点,根据切线的性质及勾股定理可得,由其非负性即可得.【详解】解:如图所示:当点P到如图位置时,的面积最大,∵、,∴圆的直径,半径为1,∴以AB定长为底,点D在圆上,高最大为圆的半径,如图所示:此时面积的最大值为:;如图所示:连接AP,∵PD切于点D,∴,∴,设点,在中,,,∴,在中,,∴,则,当时,PD取得最小值,最小值为,故答案为:①;②.【点睛】题目主要考查切线的性质及勾股定理的应用,理解题意,作出相应图形求出解析式是解题关键.4、65【分析】连接OA,OC,OB,根据四边形内角和可得,依据切线的性质及角平分线的判定定理可得DO平分,EO平分,再由各角之间的数量关系可得,,根据等量代换可得,代入求解即可.【详解】解:如图所示:连接OA,OC,OB,∵PA、PB、DE与圆相切于点A、B、E,∴,,,∵,∴,∵,∴DO平分,EO平分,∴,,∴,,∴,故答案为:65.【点睛】题目主要考查圆的切线的性质,角平分线的判定和性质,四边形内角和等,理解题意,作出相应辅助线,综合运用这些知识点是解题关键.5、9cm【分析】由弧长公式即可求得弧的半径.【详解】∵∴故答案为:9cm【点睛】本题考查了扇形的弧长公式,善于对弧长公式变形是关键.三、解答题1、(1)见解析;(2)4【分析】(1)连接OB,证明△AOB≌△AOC(SSS),可得∠ACO=∠ABO=90°,即可证明AC为⊙O的切线;(2)在Rt△BOD中,勾股定理求得BD,根据sinD==,代入数值即可求得答案【详解】解:(1)连接OB,∵AB是⊙O的切线,∴OB⊥AB,即∠ABO=90°,∵BC是弦,OA⊥BC,∴CE=BE,∴AC=AB,在△AOB和△AOC中,,∴△AOB≌△AOC(SSS),∴∠ACO=∠ABO=90°,即AC⊥OC,∴AC是⊙O的切线;(2)在Rt△BOD中,由勾股定理得,BD==2,∵sinD==,⊙O半径为2,OD=4.∴=,解得AC=2,∴AD=BD+AB=4.【点睛】本题考查了切线的性质与判定,正弦的定义,三角形全等的性质与判定,勾股定理,掌握切线的性质与判定是解题的关键.2、(1)见解析(2)见解析【分析】(1)根据轴对称图形,中心对称图形的性质画出图形即可.(2)根据中心对称图形的定义画出图形即可.(1)解:图形如图①②所示.(2)解:图形如图③所示,点P即为所求作.【点睛】本题考查利用旋转变换设计图案,正方形的性质,轴对称图形,中心对称图形等知识,解题的关键是理解题意,灵活运用所学知识解决问题.3、(1)见详解;(2)90,直径所对的圆周角是直角,BD.【分析】(1)根据作图步骤作出图形即可;(2)根据题意填空,即可求解.【详解】解:(1)如图,CH为△ABC中AB边上的高;(2)证明:∵是的直径,点,在上,∴___90_°.(__直径所对的圆周角是直角_)(填推理的依据)∴,.∴,_BD__是的两条高线.∵,所在直线交于点,∴直线也是的高所在直线.∴是中边上的高.故答案为:90,直径所对的圆周角是直角,BD.【点睛】本题考查了圆周角定理的推理,三角形的三条高线相交于一点等知识,熟知两个定理,并根据题意灵活应用是解题关键.4、(1)见解析(2)【分析】(1)连接,由圆周角定理得出,得出,再由,得出,证出,即可得出结论;(2)证明,得出对应边成比例,即可求出的长.(1)证明:连接,如图所示:是的直径,,,,,,,即,是的切线;(2)解:的半径为,,,,,,,,又,,,即,.【点睛】本题考查了切线的判定、圆周角定理、平行线的性质、相似三角形的判定与性质;解题的关键是熟练掌握圆周角定理、切线的判定.5、(1)①③;(2)点N的横坐标;(3)或.【分析】(1)在坐标系中作出圆及三个函数图象,即可得;(2)根据题意可得直线l的临界状态是与圆T相切的两条直线和,当临界状态为时;当临界状态为时,根据勾股定理及直角三角形的性质即可得;(3)根据题意,只考虑横坐标的取值范围,所以将的圆心I平移到x轴上,分三种情况讨论:①当点Q在点P的上方时,连接BP、DQ,交于点H;②当点P在点Q的上方时,直线BP、DQ,交于点H,求出直线HB、直线HD的解析式,然后利用两点之间的距离解方程求解;③当时,两条直线与圆无公共点;综合三种情况即可得.【详解】解:(1)在坐标系中作出圆及三个函数图象,可得①③函数解析式与圆有公共点,故答案为:①③;(2)如图所示:∵直线l是的关联直线,∴直线l的临界状态是与相切的两条直线和,当临界状态为时,连接TM,∴,,∵当时,,当时,,∴,∴为等腰直角三角形,∴,,∴点,同理可得当临界状态为时,点,∴点N的横坐标;(3)①如图所示:只考虑横坐标的取值范围,所以将的圆心I平移到x轴上,当点Q在点P的上方时,连接BP、DQ,交于点H;设点,直线HB的解析式为,直线HD的解析式为,当时,与互为相反数,可得,得,由图可得:,则,∴,结合,解得:,,∴,当时,,∴,h的最大值为,②如图所示:当点P在点Q的上方时,直线BP、DQ,交于点H,当圆心I在x轴上时, 设点,直线HB的解析式为,直线HD的解析式为,当时,与互为相反数,可得,得,由图可得:,则,∴,结合,解得:,,∴,当时,,∴,h的最小值为,③当时,两条直线与圆无公共点,不符合题意,∴,综上可得:或.【点睛】题目主要考查直线与圆的位置关系,等腰三角形的性质,勾股定理解三角形等,理解题意,作出相应图形是解题关键.
相关试卷
这是一份数学九年级下册第24章 圆综合与测试一课一练
这是一份数学九年级下册第24章 圆综合与测试测试题,共29页。试卷主要包含了将一把直尺等内容,欢迎下载使用。
这是一份初中沪科版第24章 圆综合与测试课后测评,共26页。试卷主要包含了如图,一个宽为2厘米的刻度尺,将一把直尺,如图,是的直径,等内容,欢迎下载使用。