终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年度强化训练沪科版九年级数学下册第24章圆专项训练试题(含解析)

    立即下载
    加入资料篮
    2021-2022学年度强化训练沪科版九年级数学下册第24章圆专项训练试题(含解析)第1页
    2021-2022学年度强化训练沪科版九年级数学下册第24章圆专项训练试题(含解析)第2页
    2021-2022学年度强化训练沪科版九年级数学下册第24章圆专项训练试题(含解析)第3页
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学第24章 圆综合与测试一课一练

    展开

    这是一份初中数学第24章 圆综合与测试一课一练,共30页。
    沪科版九年级数学下册第24章圆专项训练
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,为的直径,为外一点,过作的切线,切点为,连接交于,,点在右侧的半圆周上运动(不与,重合),则的大小是( )

    A.19° B.38° C.52° D.76°
    2、如图,在Rt△ABC中,,,,以边上一点为圆心作,恰与边,分别相切于点,,则阴影部分的面积为( )

    A. B. C. D.
    3、如图所示四个图形中,既是轴对称图形又是中心对称图形的是( )
    A. B.
    C. D.
    4、已知圆锥的底面半径为2cm,母线长为3cm,则其侧面积为( )cm.
    A.3π B.6π C.12π D.18π
    5、若的圆心角所对的弧长是,则此弧所在圆的半径为( )
    A.1 B.2 C.3 D.4
    6、在△ABC中,,点O为AB中点.以点C为圆心,CO长为半径作⊙C,则⊙C 与AB的位置关系是( )

    A.相交 B.相切
    C.相离 D.不确定
    7、如图,△ABC内接于⊙O,∠BAC=30°,BC=6,则⊙O的直径等于(  )

    A.10 B.6 C.6 D.12
    8、图2是由图1经过某一种图形的运动得到的,这种图形的运动是( )

    A.平移 B.翻折 C.旋转 D.以上三种都不对
    9、下列图形中,既是中心对称图形又是抽对称图形的是( )
    A. B. C. D.
    10、下列四个图案中,是中心对称图形但不是轴对称图形的是( )
    A. B. C. D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在平面直角坐标系中,一次函数y=-2x+4的图像与x轴、y轴分别交于点A、B,将直线AB绕点B顺时针旋转45°,交x轴于点C,则直线BC的函数表达式为_______.

    2、如图,PA,PB分别与⊙O相切于A,B两点,C是优弧AB上的一个动点,若∠P = 50°,则∠ACB =_____________°

    3、若扇形的圆心角为60°,半径为2,则该扇形的弧长是_____(结果保留)
    4、如图,在等腰直角中,已知,将绕点逆时针旋转60°,得到,连接,若,则________.

    5、如图,在平行四边形中,,,,以点为圆心,为半径的圆弧交于点,连接,则图中黑色阴影部分的面积为________.(结果保留)

    三、解答题(5小题,每小题10分,共计50分)
    1、(教材呈现)下图是华师版九年级下册数学教材第43页的部分内容.
    圆周角定理 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半;相等的圆周角所对的弧相等.
    由圆周角定理,可以得到以下推论:推论1 90°的圆周角所对的弦是直径.(如图)

    (推论证明)已知:△ABC的三个顶点都在⊙O上,且∠ACB=90°.
    求证:线段AB是⊙O的直径.
    请你结合图①写出推论1的证明过程.
    (深入探究)如图②,点A,B,C,D均在半径为1的⊙O上,若∠ACB=90°,∠ACD=60°.则线段AD的长为 .
    (拓展应用)如图③,已知△ABC是等边三角形,以AC为底边在三角形ABC外作等腰直角三角形ACD,点E是BC的中点,连结DE. 若AB=,则DE的长为 .

    2、如图,已知线段,点A在线段上,且,点B为线段上的一个动点.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,旋转角分别为和.若旋转后M、N两点重合成一点C(即构成),设.

    (1)的周长为_______;
    (2)若,求x的值.
    3、如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(0,3),B(﹣3,5),C(﹣4,1).
    (1)把△ABC向右平移3个单位得△A1B1C1,请画出△A1B1C1并写出点A1的坐标;
    (2)把△ABC绕原点O旋转180°得到△A2B2C2,请画出△A2B2C2.

    4、在中,,,过点A作BC的垂线AD,垂足为D,E为线段DC上一动点(不与点C重合),连接AE,以点A为中心,将线段AE逆时针旋转90°得到线段AF,连接BF,与直线AD交于点G.

    (1)如图,当点E在线段CD上时,
    ①依题意补全图形,并直接写出BC与CF的位置关系;
    ②求证:点G为BF的中点.
    (2)直接写出AE,BE,AG之间的数量关系.
    5、如图,抛物线y=-+x+2与x轴负半轴交于点A,与y轴交于点B.
    (1)求A,B两点的坐标;
    (2)如图1,点C在y轴右侧的抛物线上,且AC=BC,求点C的坐标;
    (3)如图2,将△ABO绕平面内点P顺时针旋转90°后,得到△DEF(点A,B,O的对应点分别是点D,E,F),D,E两点刚好在抛物线上.
    ①求点F的坐标;
    ②直接写出点P的坐标.


    -参考答案-
    一、单选题
    1、B
    【分析】
    连接 由为的直径,求解 结合为的切线,求解 再利用圆周角定理可得答案.
    【详解】
    解:连接 为的直径,




    为的切线,


    故选B
    【点睛】
    本题考查的是三角形的内角和定理,直径所对的圆周角是直角,圆周角定理,切线的性质定理,熟练运用以上知识逐一求解相关联的角的大小是解本题的关键.
    2、A
    【分析】
    连结OC,根据切线长性质DC=AC,OC平分∠ACD,求出∠OCD=∠OCA==30°,利用在Rt△ABC中,AC=ABtanB=3×,在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,利用三角形面积公式求出,,再求出扇形面积,利用割补法求即可.
    【详解】
    解:连结OC,
    ∵以边上一点为圆心作,恰与边,分别相切于点A, ,
    ∴DC=AC,OC平分∠ACD,
    ∵,,
    ∴∠ACD=90°-∠B=60°,
    ∴∠OCD=∠OCA==30°,
    在Rt△ABC中,AC=ABtanB=3×,
    在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,
    ∴OD=OA=1,DC=AC=,
    ∴,,
    ∵∠DOC=360°-∠OAC-∠ACD-∠ODC=360°-90°-90°-60°=120°,
    ∴,
    S阴影=.
    故选择A.

    【点睛】
    本题考查切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积,掌握切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积是解题关键.
    3、D
    【分析】
    根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
    【详解】
    解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;
    B.既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;
    C.不是轴对称图形,是中心对称图形,故本选项不符合题意;
    D.既是轴对称图形,又是中心对称图形,故本选项符合题意.
    故选:D.
    【点睛】
    本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    4、B
    【分析】
    利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.
    【详解】
    解:它的侧面展开图的面积=×2×2×3=6(cm2).
    故选:B.
    【点睛】
    本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
    5、C
    【分析】
    先设半径为r,再根据弧长公式建立方程,解出r即可
    【详解】
    设半径为r,
    则周长为2πr,
    120°所对应的弧长为
    解得r=3
    故选C
    【点睛】
    本题考查弧长计算,牢记弧长公式是本题关键.
    6、B
    【分析】
    根据等腰三角形的性质,三线合一即可得,根据三角形切线的判定即可判断是的切线,进而可得⊙C 与AB的位置关系
    【详解】
    解:连接,

    ,点O为AB中点.

    CO为⊙C的半径,
    是的切线,
    ⊙C 与AB的位置关系是相切
    故选B
    【点睛】
    本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键.
    7、D
    【分析】
    连接OB,OC,根据圆周角定理求出∠BOC的度数,再由OB=OC判断出△OBC是等边三角形,由此可得出结论.
    【详解】
    解:连接OB,OC,

    ∵∠BAC=30°,
    ∴∠BOC=60°.
    ∵OB=OC,BC=6,
    ∴△OBC是等边三角形,
    ∴OB=BC=6.
    ∴⊙O的直径等于12.
    故选:D.
    【点睛】
    本题考查的圆周角定理,根据题意作出辅助线,构造出等边三角形是解答此题的关键.
    8、C
    【详解】
    解:根据图形可知,这种图形的运动是旋转而得到的,
    故选:C.
    【点睛】
    本题考查了图形的旋转,熟记图形的旋转的定义(把一个平面图形绕平面内某一点转动一个角度,叫做图形的旋转)是解题关键.
    9、B
    【详解】
    解:.是轴对称图形,不是中心对称图形,故此选项不符合题意;
    .既是轴对称图形,也是中心对称图形,故此选项符合题意;
    .是轴对称图形,不是中心对称图形,故此选项不符合题意;
    .不是轴对称图形,是中心对称图形,故此选项不符合题意;
    故选:B.
    【点睛】
    本题主要考查了中心对称图形和轴对称图形的概念,解题的关键是判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    10、D
    【分析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:A、不是轴对称图形,不是中心对称图形,故此选项不符合题意;
    B、是轴对称图形,不是中心对称图形,故此选项不符合题意;
    C、是轴对称图形,是中心对称图形,故此选项不符合题意;
    D、不是轴对称图形,是中心对称图形,故此选项符合题意;
    故选:D.
    【点睛】
    此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    二、填空题
    1、##
    【分析】
    先求出点A、B的坐标,过点A作AF⊥AB,交直线BC于点F,过点F作EF⊥x轴,垂足为E,然后由全等三角形的判定和性质,等腰直角三角形的性质,求出点F的坐标,再利用待定系数法,即可求出答案.
    【详解】
    解:∵一次函数y=-2x+4的图像与x轴、y轴分别交于点A、B两点,
    ∴令,则;令,则,
    ∴点A为(2,0),点B为(0,4),
    ∴,;
    过点A作AF⊥AB,交直线BC于点F,过点F作EF⊥x轴,垂足为E,如图,

    ∴,
    ∴,
    ∴,
    ∵,
    ∴△ABF是等腰直角三角形,
    ∴AF=AB,
    ∴△ABO≌△FAE(AAS),
    ∴AO=FE,BO=AE,
    ∴,,
    ∴,
    ∴点F的坐标为(,);
    设直线BC为,则
    ,解得:,
    ∴直线BC的函数表达式为;
    故答案为:;
    【点睛】
    本题考查了一次函数的性质,全等三角形的判定和性质,等腰三角形的判定和性质,以及旋转的性质,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行解题.
    2、
    【分析】
    连接,根据切线的性质以及四边形内角和定理求得,进而根据圆周角定理即可求得∠ACB
    【详解】
    解:连接,如图,

    PA,PB分别与⊙O相切




    故答案为:
    【点睛】
    本题考查了切线的性质,圆周角定理,四边形的内角和,掌握切线的性质是解题的关键.
    3、
    【分析】
    已知扇形的圆心角为,半径为2,代入弧长公式计算.
    【详解】
    解:依题意,n=,r=2,
    ∴扇形的弧长=.
    故答案为:.
    【点睛】
    本题考查了弧长公式的运用.关键是熟悉公式:扇形的弧长=.
    4、
    【分析】
    如图连接并延长,过点作交于点,,由题意可知为等边三角形,,,在中;在中计算求解即可.
    【详解】
    解:如图连接并延长,过点作交于点,

    由题意可知,,为等边三角形


    在中
    在中
    故答案为:.
    【点睛】
    本题考查了旋转的性质,等边三角形,勾股定理,含的直角三角形等知识.解题的关键在于做辅助线构造直角三角形.
    5、
    【分析】
    过点C作于点H,根据正弦定义解得CH的长,再由扇形面积公式、三角形的面积公式解题即可.
    【详解】
    解:过点C作于点H,

    在平行四边形中,


    平行四边形的面积为:,
    图中黑色阴影部分的面积为:

    故答案为:.
    【点睛】
    本题考查平行四边形的性质、扇形面积等知识,是基础考点,掌握相关知识是解题关键.
    三、解答题
    1、【推论证明】见解析;【深入探究】;【拓展应用】.
    【分析】
    推论证明:根据圆周角定理求出,即可证明出线段AB是⊙O的直径;
    深入探究:连接AB,首先根据∠ACB=90°得出AB是⊙O的直径,然后求出,然后根据同弧所对的圆周角相等得到,然后根据30°角直角三角形的性质求出BD的长度,最后根据勾股定理即可求出AD的长度;
    拓展应用:连接AE,作CF⊥DE交DE于点F,首先根据等边三角形三线合一的性质求出,然后证明出A,E,C,D四点共圆,然后根据同弧或等弧所对的圆周角相等求出,,最后根据等腰直角三角形的性质和30°角直角三角形的性质,结合勾股定理求解即可.
    【详解】
    解:推论证明:∵
    ∴,
    ∴A,B,O三点共线,
    又∵点O是圆心,
    ∴AB是⊙O的直径;
    深入探究:如图所示,连接AB,

    ∵∠ACB=90°
    ∴AB是⊙O的直径

    ∵∠ACD=60°



    ∴在中,
    ∴;
    拓展应用:如图所示,连接AE,作CF⊥DE交DE于点F,

    ∵△ABC是等边三角形,点E是BC的中点
    ∴,
    又∵以AC为底边在三角形ABC外作等腰直角三角形ACD
    ∴,
    ∴点A,E,C,D四点都在以AC为直径的圆上,


    ∵CF⊥DE
    ∴是等腰直角三角形
    ∴,


    ∴,解得:



    ∴在中,

    ∴.
    【点睛】
    此题考查了圆周角定理,90°的圆周角所对的弦是直径,相等的圆周角所对的弧相等,等边三角形和等腰直角三角形的性质等知识,解题的关键是熟练掌握以上知识点和性质定理.
    2、
    (1)4
    (2)
    【分析】
    (1)由旋转知:AM=AC=1,BN=BC,将△ABC的周长转化为MN;
    (2)由α+β=270°,得∠ACB=90°,利用勾股定理列方程即可.
    (1)
    解:由旋转知:AM=AC=1,BN=BC=3-x,
    ∴△ABC的周长为:AC+AB+BC=MN=4;
    故答案为:4;
    (2)
    解:∵α+β=270°,
    ∴∠CAB+∠CBA=360°-270°=90°,
    ∴∠ACB=180°-(∠CAB+∠CBA)
    =180°-90°
    =90°,
    ∴AC2+BC2=AB2,
    即12+(3-x)2=x2,
    解得.
    【点睛】
    本题主要考查了旋转的性质,勾股定理等知识,证明∠ACB=90°是解题的关键.
    3、(1)图见解析;A1(3,3);(2)见解析
    【分析】
    (1)直接利用平移的性质得出对应点位置进而得出答案;
    (2)直接利用旋转的性质得出对应点位置进而得出答案.
    【详解】
    解:(1)如图所示:△A1B1C1,即为所求,点A1的坐标为:(3,3);

    (2)如图所示:△A2B2C2,即为所求.
    【点睛】
    此题主要考查了旋转变换以及平移变换,正确得出对应点位置是解题关键.
    4、(1)①BC⊥CF;证明见详解;②见详解;(2)2AE2=4AG2+BE2.证明见详解.
    【分析】
    (1)①如图所示,BC⊥CF.根据将线段AE逆时针旋转90°得到线段AF,得出AE=AF,∠EAF=90°,可证△BAE≌△CAF(SAS),得出∠ABE=∠ACF=45°,可得∠ECF=∠ACB+∠ACF=45°+45°=90°即可;
    ②根据AD⊥BC,BC⊥CF.可得AD∥CF,可证△BDG∽△BCF,可得,得出即可;
    (2)2AE2=4AG2+BE2,延长BA交CF延长线于H,根据等腰三角形性质可得AD平分∠BAC,可得∠BAD=∠CAD=,可证△BAG∽△BHF,得出HF=2AG,再证△AEC≌△AFH(AAS),得出EC=FH=2AG,利用勾股定理得出,即即可.
    【详解】
    解:(1)①如图所示,BC⊥CF.
    ∵将线段AE逆时针旋转90°得到线段AF,
    ∴AE=AF,∠EAF=90°,
    ∴∠EAC+∠CAF=90°,
    ∵,,
    ∴∠BAE+∠EAC=90°,∠ABC=∠ACB=45°,
    ∴∠BAE=∠CAF,
    在△BAE和△CAF中,

    ∴△BAE≌△CAF(SAS),
    ∴∠ABE=∠ACF=45°,
    ∴∠ECF=∠ACB+∠ACF=45°+45°=90°,
    ∴BC⊥CF;

    ②∵AD⊥BC,BC⊥CF.
    ∴AD∥CF,
    ∴∠BDG=∠BCF=90°,∠BGD=∠BFC,
    ∴△BDG∽△BCF,
    ∴,
    ∵,AD⊥BC,
    ∴BD=DC=,
    ∴,
    ∴,
    ∴,
    ∴BG=GF;
    (2)2AE2=4AG2+BE2.延长BA交CF延长线于H,
    ∵AD⊥BC,AB=AC,
    ∴AD平分∠BAC,
    ∴∠BAD=∠CAD=,
    ∵BG=GF,AG∥HF,
    ∴∠BAG=∠H=45°,∠AGB=∠HFB,
    ∴△BAG∽△BHF,
    ∴,
    ∴HF=2AG,
    ∵∠ACE=45°,
    ∴∠ACE =∠H,
    ∵∠EAC+∠CAF=90°,∠CAF+∠FAH=90°,
    ∴∠EAC=∠FAH,
    在△AEC和△AFH中,

    ∴△AEC≌△AFH(AAS),
    ∴EC=FH=2AG,
    在Rt△AEF中,根据勾股定理,
    在Rt△ECF中,即.

    【点睛】
    本题考查图形旋转性质,三角形完全判定与性质,等腰直角三角形性质,三角形相似判定与性质,勾股定理,掌握图形旋转性质,三角形完全判定与性质,等腰直角三角形性质,三角形相似判定与性质,勾股定理是解题关键.
    5、(1)A(-1,0),B(0,2);(2)点C的坐标(,);(3)①求点F的坐标(1,2);②点P的坐标(,)
    【分析】
    (1)令x=0,求得y值,得点B的坐标;令y=0,求得x的值,取较小的一个即求A点的坐标;
    (2)设C的坐标为(x,-+x+2),根据AC=BC,得到,令t=-+x,解方程即可;
    (3)①根据题意,得∠BPE=90°,PB=PE即点P在线段BE的垂直平分线上,根据B,E都在抛物线上,则B,E是对称点,从而确定点P在抛物线的对称轴上,点F在BE上,且BE∥x轴,点E(3,2),确定BE=3,根据旋转性质,得EF=BO=2,从而确定点F的坐标;
    ②根据BE=3,∠BPE=90°,PB=PE,确定P到BE的距离,即可写出点P的坐标.
    【详解】
    (1)令x=0,得y=2,
    ∴点B的坐标为B(0,2);
    令y=0,得-+x+2=0,
    解得
    ∵点A在x轴的负半轴;
    ∴A点的坐标(-1,0);
    (2)设C的坐标为(x,-+x+2),
    ∵AC=BC,A(-1,0),B(0,2),
    ∴,
    ∵A(-1,0),B(0,2),
    ∴,
    即,
    设t=-+x,
    ∴,
    ∴,
    ∴,
    ∴,
    整理,得,
    解得
    ∵点C在y轴右侧的抛物线上,
    ∴,
    此时y=,
    ∴点C的坐标(,);
    (3)①如图,根据题意,得∠BPE=90°,PB=PE即点P在线段BE的垂直平分线上,

    ∵B,E都在抛物线上,
    ∴B,E是对称点,
    ∴点P在抛物线的对称轴上,点F在BE上,且BE∥x轴,
    ∵抛物线的对称轴为直线x=,B(0,2),
    ∴点E(3,2),BE=3,
    ∵EF=BO=2,
    ∴BF=1,
    ∴点F的坐标为(1,2);
    ②如图,设抛物线的对称轴与BE交于点M,交x轴与点N,
    ∵BE=3,
    ∴BM=,
    ∵∠BPE=90°,PB=PE,
    ∴PM=BM=,
    ∴PM=BM=,
    ∴PN=2-=,
    ∴点P的坐标为(,).
    【点睛】
    本题考查了抛物线与坐标轴的交点,旋转的性质,两点间的距离公式,一元二次方程的解法,换元法解方程,熟练掌握抛物线的对称性,灵活理解旋转的意义,熟练解一元二次方程是解题的关键.

    相关试卷

    初中数学沪科版九年级下册第24章 圆综合与测试当堂达标检测题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试当堂达标检测题,共28页。

    初中数学沪科版九年级下册第24章 圆综合与测试课后作业题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试课后作业题,共25页。

    初中数学第24章 圆综合与测试复习练习题:

    这是一份初中数学第24章 圆综合与测试复习练习题,共31页。试卷主要包含了点P关于原点O的对称点的坐标是等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map