终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年度强化训练沪科版九年级数学下册第24章圆定向训练试题(含解析)

    立即下载
    加入资料篮
    2021-2022学年度强化训练沪科版九年级数学下册第24章圆定向训练试题(含解析)第1页
    2021-2022学年度强化训练沪科版九年级数学下册第24章圆定向训练试题(含解析)第2页
    2021-2022学年度强化训练沪科版九年级数学下册第24章圆定向训练试题(含解析)第3页
    还剩31页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021学年第24章 圆综合与测试测试题

    展开

    这是一份2021学年第24章 圆综合与测试测试题,共34页。试卷主要包含了下列语句判断正确的是,如图,点A,将一把直尺等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,在中,,,若以点为圆心,的长为半径的圆恰好经过的中点,则的长等于( )
    A.B.C.D.
    2、如图是一个含有3个正方形的相框,其中∠BCD=∠DEF=90°,AB=2,CD=3,EF=5,将它镶嵌在一个圆形的金属框上,使A,G, H三点刚好在金属框上,则该金属框的半径是( )
    A.B.C.D.
    3、如图,是的直径,弦,垂足为,若,则( )
    A.5B.8C.9D.10
    4、在直径为10cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽cm,则水的最大深度为( )
    A.1cmB.2cmC.3cmD.4cm
    5、如图,点P是等边三角形ABC内一点,且PA=3,PB=4,PC=5,则∠APB的度数是( ).
    A.90°B.100°C.120°D.150°
    6、如图,AB是的直径,的弦DC的延长线与AB的延长线相交于点P,于点E,,,则阴影部分的面积为( )
    A.B.C.D.
    7、下列语句判断正确的是( )
    A.等边三角形是轴对称图形,但不是中心对称图形
    B.等边三角形既是轴对称图形,又是中心对称图形
    C.等边三角形是中心对称图形,但不是轴对称图形
    D.等边三角形既不是轴对称图形,也不是中心对称图形
    8、如图,点A、B、C在上,,则的度数是( )
    A.100°B.50°C.40°D.25°
    9、将一把直尺、一个含60°角的直角三角板和一个光盘按如图所示摆放,直角三角板的直角边AD与直尺的一边重合,光盘与直尺相切于点B,与直角三角板相切于点C,且,则光盘的直径是( )
    A.6B.C.3D.
    10、如图,一个宽为2厘米的刻度尺(刻度单位:厘米).放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是2和8,那么玻璃杯的杯口外沿半径为( )
    A.5厘米B.4厘米C.厘米D.厘米
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、已知O、I分别是△ABC的外心和内心,∠BIC=125°,则∠BOC的大小是 ___度.
    2、一个直角三角形的斜边长cm,两条直角边长的和是6cm,则这个直角三角形外接圆的半径为______cm,直角三角形的面积是________.
    3、若一次函数y=kx+8(k≠0)的图象与x轴、y轴分别交于A、B两点,当k的取值变化时,点A随之在x轴上运动,将线段AB绕点B逆时针旋转90°得到BQ,连接OQ,则OQ长的最小值是 ___.
    4、在平面直角坐标系中,将点绕坐标原点顺时针旋转后得到点Q,则点Q的坐标是___________.
    5、如图,正三角形ABC的边长为,D、E、F 分别为BC,CA,AB的中点,以A,B,C三点为圆心,长为半径作圆,图中阴影部分面积为______.
    三、解答题(5小题,每小题10分,共计50分)
    1、在等边中,将线段AB绕点A顺时针旋转得到线段AD.
    (1)若线段DA的延长线与线段BC相交于点E(不与点B,C重合),写出满足条件的α的取值范围;
    (2)在(1)的条件下连接BD,交CA的延长线于点F.
    ①依题意补全图形;②用等式表示线段AE,AF,CE之间的数量关系,并证明.
    2、如图1,在中,,,将边绕着点A逆时针旋转,得到线段,连接交边于点E,过点C作于点F,延长交于点G.
    (1)求证:;
    (2)如图2,当时,求证:;
    (3)如图3,当时,请直接写出的值.
    3、已知:如图,△ABC为锐角三角形,AB=AC
    求作:一点P,使得∠APC=∠BAC
    作法:①以点A为圆心, AB长为半径画圆;
    ②以点B为圆心,BC长为半径画弧,交⊙A于点C,D两点;
    ③连接DA并延长交⊙A于点P
    点P即为所求
    (1)使用直尺和圆规,依作法补全图形(保留作图痕迹);
    (2)完成下面的证明
    证明:连接PC,BD
    ∵AB=AC,
    ∴点C在⊙A上
    ∵BC=BD,
    ∴∠_________=∠_________
    ∴∠BAC=∠CAD
    ∵点D,P在⊙A上,
    ∴∠CPD=∠CAD(______________________) (填推理的依据)
    ∴∠APC=∠BAC
    4、如图,已知弓形的长,弓高,(,并经过圆心O).
    (1)请利用尺规作图的方法找到圆心O;
    (2)求弓形所在的半径的长.
    5、将矩形ABCD绕着点C按顺时针方向旋转得到矩形FECG,其中点E与点B,点G与点D分别是对应点,连接BG.
    (1)如图,若点A,E,D第一次在同一直线上,BG与CE交于点H,连接BE.
    ①求证:BE平分∠AEC.
    ②取BC的中点P,连接PH,求证:PHCG.
    ③若BC=2AB=2,求BG的长.
    (2)若点A,E,D第二次在同一直线上,BC=2AB=4,直接写出点D到BG的距离.
    -参考答案-
    一、单选题
    1、D
    【分析】
    连接CD,由直角三角形斜边中线定理可得CD=BD,然后可得△CDB是等边三角形,则有BD=BC=5cm,进而根据勾股定理可求解.
    【详解】
    解:连接CD,如图所示:
    ∵点D是AB的中点,,,
    ∴,
    ∵,
    ∴,
    在Rt△ACB中,由勾股定理可得;
    故选D.
    【点睛】
    本题主要考查圆的基本性质、直角三角形斜边中线定理及勾股定理,熟练掌握圆的基本性质、直角三角形斜边中线定理及勾股定理是解题的关键.
    2、A
    【分析】
    如图,记过A,G, H三点的圆为则是,的垂直平分线的交点, 记的交点为 的交点为 延长交于为的垂直平分线,结合正方形的性质可得:再设利用勾股定理建立方程,再解方程即可得到答案.
    【详解】
    解:如图,记过A,G, H三点的圆为则是,的垂直平分线的交点,
    记的交点为 的交点为 延长交于为的垂直平分线,结合正方形的性质可得:
    四边形为正方形,则

    设 而AB=2,CD=3,EF=5,结合正方形的性质可得:



    又 而


    解得:

    故选A
    【点睛】
    本题考查的是正方形的性质,三角形外接圆圆心的确定,圆的基本性质,勾股定理的应用,二次根式的化简,确定过A,G, H三点的圆的圆心是解本题的关键.
    3、C
    【分析】
    连接,根据垂径定理可得,设的半径为,则,进而勾股定理列出方程求得半径,进而求得
    【详解】
    解:如图,连接,
    ∵是的直径,弦,

    设的半径为,则
    在中,,

    解得

    故选C
    【点睛】
    本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
    4、B
    【分析】
    连接OB,过点O作OC⊥AB于点D,交⊙O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而得出CD的长即可.
    【详解】
    解:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,如图所示:
    ∵AB=8cm,
    ∴BD=AB=4(cm),
    由题意得:OB=OC==5cm,
    在Rt△OBD中,OD=(cm),
    ∴CD=OC-OD=5-3=2(cm),
    即水的最大深度为2cm,
    故选:B.
    【点睛】
    本题考查了垂径定理、勾股定理等知识;根据题意作出辅助线,构造出直角三角形是解答此题的关键.
    5、D
    【分析】
    将绕点逆时针旋转得,根据旋转的性质得,,,则为等边三角形,得到,,在中,,,,根据勾股定理的逆定理可得到为直角三角形,且,即可得到的度数.
    【详解】
    解:为等边三角形,

    可将绕点逆时针旋转得,
    如图,连接,
    ,,,
    为等边三角形,
    ,,
    在中,,,,

    为直角三角形,且,

    故选:D.
    【点睛】
    本题考查了旋转的性质、等边三角形,解题的关键是掌握旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.
    6、B
    【分析】
    由垂径定理可知,AE=CE,则阴影部分的面积等于扇形AOD的面积,求出,然后利用扇形面积公式,即可求出答案.
    【详解】
    解:根据题意,如图:
    ∵AB是的直径,OD是半径,,
    ∴AE=CE,
    ∴阴影CED的面积等于AED的面积,
    ∴,
    ∵,,
    ∴,
    ∴;
    故选:B
    【点睛】
    本题考查了求扇形的面积,垂径定理,解题的关键是掌握所学的知识,正确利用扇形的面积公式进行计算.
    7、A
    【分析】
    根据等边三角形的对称性判断即可.
    【详解】
    ∵等边三角形是轴对称图形,但不是中心对称图形,
    ∴B,C,D都不符合题意;
    故选:A.
    【点睛】
    本题考查了等边三角形的对称性,熟练掌握等边三角形的对称性是解题的关键.
    8、C
    【分析】
    先根据圆周角定理求出∠AOB的度数,再由等腰三角形的性质即可得出结论.
    【详解】
    ∵∠ACB=50°,
    ∴∠AOB=100°,
    ∵OA=OB,
    ∴∠OAB=∠OBA= 40°,
    故选:C.
    【点睛】
    本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
    9、D
    【分析】
    如图所示,设圆的圆心为O,连接OC,OB,由切线的性质可知∠OCA=∠OBA=90°,OC=OB,即可证明Rt△OCA≌Rt△OBA得到∠OAC=∠OAB,则,∠AOB=30°,推出OA=2AB=6,利用勾股定理求出,即可得到圆O的直径为.
    【详解】
    解:如图所示,设圆的圆心为O,连接OC,OB,
    ∵AC,AB都是圆O的切线,
    ∴∠OCA=∠OBA=90°,OC=OB,
    又∵OA=OA,
    ∴Rt△OCA≌Rt△OBA(HL),
    ∴∠OAC=∠OAB,
    ∵∠DAC=60°,
    ∴,
    ∴∠AOB=30°,
    ∴OA=2AB=6,
    ∴,
    ∴圆O的直径为,
    故选D.
    【点睛】
    本题主要考查了切线的性质,全等三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,熟知切线的性质是解题的关键.
    10、D
    【分析】
    根据题意先求出弦AC的长,再过点O作OB⊥AC于点B,由垂径定理可得出AB的长,设杯口的半径为r,则OB=r-2,OA=r,在Rt△AOB中根据勾股定理求出r的值即可.
    【详解】
    解:∵杯口外沿两个交点处的读数恰好是2和8,
    ∴AC=8-2=6厘米,
    过点O作OB⊥AC于点B,
    则AB=AC=×6=3厘米,
    设杯口的半径为r,则OB=r-2,OA=r,
    在Rt△AOB中,
    OA2=OB2+AB2,即r2=(r-2)2+32,
    解得r=厘米.
    故选:D.
    【点睛】
    本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
    二、填空题
    1、140
    【分析】
    作的外接圆,根据三角形内心的性质可得:,,再由三角形内角和定理得出:,最后根据三角形外心的性质及圆周角定理即可得.
    【详解】
    解:如图所示,作的外接圆,
    ∵点I是的内心,
    ∴BI,CI分别平分和,
    ∴,,
    ∵,
    ∴,
    ∴,
    ∴,
    ∵点O是的外心,
    ∴,
    故答案为:140.
    【点睛】
    题目主要考查三角形内心与外心的性质,三角形内角和定理等,理解题意,熟练掌握三角形内心与外心的性质是解题关键.
    2、 4
    【分析】
    设一直角边长为x,另一直角边长为(6-x)根据勾股定理,解一元二次方程求出,根据这个直角三角形的斜边长为外接圆的直径,可求外接圆的半径为cm,利用三角形面积公式求即可.
    【详解】
    解:设一直角边长为x,另一直角边长为(6-x),
    ∵三角形是直角三角形,
    ∴根据勾股定理,
    整理得:,
    解得,
    这个直角三角形的斜边长为外接圆的直径,
    ∴外接圆的半径为cm,
    三角形面积为.
    故答案为;.
    【点睛】
    本题考查直角三角形的外接圆,直角所对弦性质,勾股定理,一元二次方程,三角形面积,掌握以上知识是解题关键.
    3、8
    【分析】
    根据一次函数解析式可得:,,过点B作轴,过点A作,过点Q作,由旋转的性质可得,,依据全等三角形的判定定理及性质可得:ΔMAB≅ΔNBQ,,,即可确定点Q的坐标,然后利用勾股定理得出OQ的长度,最后考虑在什么情况下取得最小值即可.
    【详解】
    解:函数得:,,过点B作轴,过点A作,过点Q作,连接OQ,如图所示:
    将线段BA绕点B逆时针旋转得到线段BQ,
    ∴,,

    ∴,
    在ΔMAB与ΔNBQ中,

    ∴ΔMAB≅ΔNBQ,
    ∴,,
    点Q的坐标为,

    当或时,取得最小值为8,
    故答案为:8.
    【点睛】
    题目主要考查一次函数与几何的综合问题,包括与坐标轴的交点,旋转,全等三角形的判定和性质,勾股定理等,理解题意,作出相应图形是解题关键.
    4、
    【分析】
    绕坐标原点顺时针旋转即关于原点中心对称,找到关于原点中心对称的点的坐标即可,根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解.
    【详解】
    解:将点绕坐标原点顺时针旋转后得到点Q,则点Q的坐标是
    故答案为:
    【点睛】
    本题考查了求一个点关于原点中心对称的点的坐标,掌握关于原点中心对称的点的坐标特征是解题的关键.关于原点对称的两个点,横坐标、纵坐标分别互为相反数.
    5、
    【分析】
    阴影部分的面积等于等边三角形的面积减去三个扇形面积,而这三个扇形拼起来正好是一个半径为半圆的面积,即阴影部分面积=等边三角形面积−半径为半圆的面积,因此求出半圆面积,连接AD,则可求得AD的长,从而可求得等边三角形的面积,即可求得阴影部分的面积.
    【详解】
    连接AD,如图所示
    则AD⊥BC
    ∵D点是BC的中点

    由勾股定理得

    ∵S半圆=
    ∴S阴影=S△ABC−S半圆
    故答案为:
    【点睛】
    本题是求组合图形的面积,扇形面积及三角形面积的计算.关键是把不规则图形面积通过割补转化为规则图形的面积计算.
    三、解答题
    1、(1);(2)①见解析;②AE=AF+CE,证明见解析.
    【分析】
    (1)根据“线段DA的延长线与线段BC相交于点E”可求解;
    (2)①根据要求画出图形,即可得出结论;②在AE上截取AH=AF,先证△AFD≌△AHC,再证∠CHE=∠HCE,即可得出结果.
    【详解】
    (1)如图:AD只能在锐角∠EAF内旋转符合题意
    故α的取值范围为:;
    (2)补全图形如下:
    (3)AE=AF+CE,
    证明:在AE上截取AH=AF,由旋转可得:AB=AD,
    ∴∠D=∠ABF,
    ∵△ABC为等边三角形,
    ∴AB=AC,∠BAC=∠ACB=60°,
    ∴AD=AC,
    ∵∠DAF=∠CAH,
    ∴△AFD≌△AHC,
    ∴∠AFD=∠AHC,∠D=∠ACH,
    ∴∠AFB=∠CHE,
    ∵∠AFB+∠ABF=∠ACH+∠HCE=60°,
    ∴∠CHE+∠D=∠D+∠HCE=60°,
    ∴∠CHE=∠HCE,
    ∴CE=HE,
    ∴AE=AH+HE=AF+CE.
    【点睛】
    本题考查了旋转的性质,三角形外角的性质,等边三角形性质及应用,解题的关键是正确画出图形和作出辅助线.
    2、
    (1)见解析
    (2)见解析
    (3)
    【分析】
    (1)由旋转的性质得AB=AD,所以,再根据三角形内角和定理可证明即可得到结论;
    (2)连接,根据ASA证明≌得,是等边三角形,从而得出,再运用AAS证明≌得,由勾股定理可得出,从而 可得结论;
    (3)证明平分,作于点,根据勾股定理得,代入求值即可.
    (1)
    ∵边绕着点逆时针旋转得到线段,
    ∴.
    ∵,
    ∴.
    ∴.
    ∵,

    又,且∠AEB=∠CEF
    ∴.
    ∴.
    (2)
    连接.
    在和中,
    ∵,
    ∴≌(ASA).
    ∴.
    ∴,即.
    在和中,
    ∵,
    ∴≌(AAS).
    ∴.
    ∵,
    ∴在中,,
    即.
    ∵,,
    ∴是等边三角形.
    ∴.
    (3)

    ∵,,

    ∵.
    ∵,
    ∴.
    ∴平分.
    作于点,
    ∴.
    ∴在中,.
    ∵≌,≌,
    ∴,,.
    ∴在中,,
    ∵,
    ∴.
    【点睛】
    本题属于几何变换综合题,考查了旋转变换,等腰直角三角形的性质,等边三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形.
    3、(1)见解析;(2)BAC=BAD,圆周角定理或同弧所对的圆周角等于它所对圆心角的一半
    【分析】
    (1)根据按步骤作图即可;
    (2)根据圆周角定理进行证明即可
    【详解】
    解:(1)如图所示,
    (2)证明:连接PC,BD
    ∵AB=AC,
    ∴点C在⊙A上
    ∵BC=BD,
    ∴∠BAC=∠BAD
    ∴∠BAC=∠CAD
    ∵点D,P在⊙A上,
    ∴∠CPD=∠CAD(圆周角定理) (填推理的依据)
    ∴∠APC=∠BAC
    故答案为:BAC=BAD,圆周角定理或同弧所对的圆周角等于它所对圆心角的一半
    【点睛】
    本题考查了尺规作图作圆,圆周角定理,掌握圆周角定理是解题的关键.
    4、
    (1)见解析
    (2)10
    【分析】
    (1)作BC的垂直平分线,与直线CD的交点即为圆心;
    (2)连接OA,根据勾股定理列出方程即可求解.
    (1)
    解:如图所示,点O即是圆心;
    (2)
    解:连接OA,
    ∵,并经过圆心O,,
    ∴,
    ∵,

    解得,,
    答:半径为10.
    【点睛】
    本题考查了垂径定理和确定圆心,解题关键是熟练作图确定圆心,利用垂径定理和勾股定理求半径.
    5、
    (1)①见解析;②见解析;③
    (2)
    【分析】
    (1)①根据旋转的性质得到,求得,根据平行线的性质得到,于是得到结论;
    ②如图1,过点作的垂线,根据角平分线的性质得到,求得,根据全等三角形的性质得到,根据三角形的中位线定理即可得到结论;
    ③如图2,过点作的垂线,解直角三角形即可得到结论.
    (2)如图3,连接,,过作交的延长线于,交的延长线于,根据旋转的性质得到,,解直角三角形得到,,根据三角形的面积公式即可得到结论.
    (1)
    解:①证明:矩形绕着点按顺时针方向旋转得到矩形,


    又,


    平分;
    ②证明:如图1,过点作的垂线,
    平分,,,


    ,,,


    即点是中点,
    又点是中点,

    ③解:如图2,过点作的垂线,






    ,,

    (2)
    解:如图3,连接,,过作交的延长线于,交的延长线于,


    将矩形绕着点按顺时针方向旋转得到矩形,
    ,,
    点,,第二次在同一直线上,




    ,,
    ,,
    ,,

    【点睛】
    本题考查了旋转的性质,全等三角形的判定和性质,矩形的性质,三角形的中位线定理,勾股定理,解直角三角形,解题的关键是正确地作出辅助线.

    相关试卷

    2020-2021学年第24章 圆综合与测试课时训练:

    这是一份2020-2021学年第24章 圆综合与测试课时训练,共31页。

    数学第24章 圆综合与测试同步练习题:

    这是一份数学第24章 圆综合与测试同步练习题,共26页。试卷主要包含了点P关于原点O的对称点的坐标是,下列图形中,是中心对称图形的是等内容,欢迎下载使用。

    沪科版九年级下册第24章 圆综合与测试同步训练题:

    这是一份沪科版九年级下册第24章 圆综合与测试同步训练题,共26页。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map