- 专题8.2 二元一次方程组(提高篇)专项练习-【挑战满分】2021-2022学年七年级数学下册阶段性复习精选精练(人教版) 试卷 11 次下载
- 专题9.1 不等式与不等式组(基础篇)专项练习-【挑战满分】2021-2022学年七年级数学下册阶段性复习精选精练(人教版) 试卷 7 次下载
- 专题9.2 不等式与不等式组(提高篇)专项练习-【挑战满分】2021-2022学年七年级数学下册阶段性复习精选精练(人教版) 试卷 10 次下载
- 专题11.1 期末综合复习测试(专项练习1)-【挑战满分】2021-2022学年七年级数学下册阶段性复习精选精练(人教版) 试卷 15 次下载
- 专题11.2 期末综合复习测试(专项练习2)-【挑战满分】2021-2022学年七年级数学下册阶段性复习精选精练(人教版) 试卷 13 次下载
专题10.2 数据的收集、整理与描述(提高篇)专项练习-【挑战满分】2021-2022学年七年级数学下册阶段性复习精选精练(人教版)
展开专题10.2 数据的收集、整理与描述(提高篇)专项练习
一、单选题
1.下列调查中,适宜采用全面调查(普查)方式的是( )
A.对疫情后某班学生心理健康状况的调查 B.对某大型自然保护区树木高度的调查
C.对义乌市市民实施低碳生活情况的调查 D.对某个工厂口罩质量的调查
2.下列调查中,最适合采用全面调查(普查)的是( ).
A.对我市中学生近视情况的调查
B.对我市市民国庆出游情况的调查
C.对全国人民掌握新冠防疫知识情况的调查
D.对我国自行研制的大型飞机C919各零部件质量情况的调查
3.下列说法正确的是( )
A.为了了解全国初中学生的眼睛近视情况,适宜采用全面调查;
B.“每天太阳从西边出来”是随机事件;
C.甲、乙两人射中环数的方差分别为,,说明甲的射击成绩比乙稳定;
D.数据3,4,2,5,6的平均数是4.
4.某市2014年至2020年国内生产总值年增长率(%)变化情况如统计图,从图上看,下列结论中不正确的是( )
A.2014年至2020年,该市每年的国内生产总值有增有减
B.2014年至2017年,该市国内生产总值的年增长率逐年减小
C.自2017年以来,该市国内生产总值的年增长率开始回升
D.2014年至2020年,该市每年的国内生产总值不断增长
5.网上一家电子产品店,今年1﹣4月的电子产品销售总额如图1,其中一款平板电脑的销售额占当月电子产品销售总额的百分比如图2
根据图中信息,有以下四个结论,推断不合理的是( )
A.从1月到4月,电子产品销售总额为290万元
B.平板电脑2﹣4月的销售额占当月电子产品销售总额的百分比与1月份相比都下降了
C.平板电脑4月份的销售额比3月份有所下降
D.今年1﹣4月中,平板电脑售额最低的是3月
6.为宣传和普及垃圾分类的有效方法,不断增强同学们的环保意识,某学校举办了垃圾分类知识竞赛活动.学校为了解学生对这次大赛的掌握情况,在全校1500名学生中随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了两幅统计图,如图所示.下列四个选项错误的是( )
A.样本容量为60
B.所抽取学生中,竞赛成绩“良好”的人数为16人
C.所抽取学生中,成绩为“优秀”和“良好”的人数占比和低于“合格”的人数占比
D.
7.为了解某市九年级男生的身高情况,随机抽取了该市名九年级男生,他们的身高统计如下:
组别
人数
根据以上结果,全市约有万男生,估计全市男生的身高不高于的人数是( )
A. B. C. D.
8.在线教育使学生足不出户也能连接全球优秀的教育资源.下面的统计图反映了我国在线教育用户规模的变化情况.根据统计图提供的信息,给出下列判断:①2015年12月-2017年6月,我国在线教育用户规模逐渐上升;②2015年12月-2017年6月,我国手机在线教育课程用户规模占在线教育用户规模的比例持续上升;③2017年6月,我国手机在线教育课程用户规模超过在线教育用户规模的70%,其中正确的是( )
2015年-2017年中国在线教育用户规模统计图
A.① B.①② C.②③ D.①③
9.在大课间活动中,同学们积极参加体育锻炼.小丽在全校随机抽取一部分同学就“一分钟跳绳”进行测试,并以测试数据为样本绘制如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图,若“一分钟跳绳”次数不低于130次的成绩为优秀,全校共有1200名学生,根据图中提供的信息,下列说法不正确的是( )
A.第四小组有10人 B.本次抽样调查的样本容量为50
C.该校“一分钟跳绳”成绩优秀的人数约为480人 D.第五小组对应圆心角的度数为
10.某班学生在颁奖大会上得知该班获得奖励的情况如下表:
已知该班共有27人获得奖励(每位同学均可获得不同级别、不同类别多项奖励),其中只获得两项奖励的有13人,那么该班获得奖励最多的一位同学可能获得的奖励为( )
A.3项 B.4项 C.5项 D.6项
二、填空题
11.某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A、B、C、D、E五个等级,绘制的统计图如下:
根据以上统计图提供的信息,则D等级这一组人数较多的班是________
12.某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为_____人.
13.某校学生自主建立了一个学习用品义卖平台,已知九年级200名学生义卖所得金额的频数分布直方图如图所示,那么20﹣30元这个小组的组频率是_____.
14.如图是小强根据全班同学喜爱四类电视节目的人数而绘制的两幅不完整的统计图,则喜爱“体育”节目的人数是_____人.
15.某校九年级有560名学生参加了市教育局举行的读书活动,现随机调查了70名学生读书的数量,根据所得数据绘制了如图的条形统计图,请估计该校九年级学生在此次读书活动中共读书________本.
16.学校团委会为了举办“庆祝五•四”活动,调查了本校所有学生,调查结果如图所示,根据图中给出的信息,这次学校赞成举办郊游活动的学生有____人.
17.已知一组数据的平均数是5,则数据的平均数是______.
18.下表是某报纸公布的我国“九五”期间国内生产总值(GDP)的统计表,那么这几年间我国国内生产总值平均每年比上一年增长___万亿元.
年份
1996
1997
1998
1999
2000
GDP/万亿元
6.6
7.3
7.9
8.2
8.9
19.某校随机调查了若干名家长与中学生对带手机进校园的态度统计图(如图),已知调查家长的人数与调查学生的人数相等,则家长反对学生带手机进校园的人数有_____.
20.某中学抽取部分学生对“你最喜欢的球类运动”调查问卷,收集整理数据后列频数频率分布表(部分)如下(其中m,n为已知数):
项目
乒乓球
羽毛球
篮球
足球
频数
80
50
m
频率
0.4
0.25
n
则mn的值为_____.
21.科学技术的发展离不开大量的研究与试验,下面的统计图反映了北京市2013~2017年研究与试验经费支出及增长速度的情况.
根据统计图提供的信息,有以下四个推断:
①2013~2017年,北京市研究与试验经费支出连年增高;
②2014~2017年,北京市研究与试验经费支出较上一年实际增长最多的是2017年;
③与2015年相比,2016年北京市研究与试验经费支出的增长速度有所下降;
④2013~2017年,北京市研究与试验经费支出的平均增长速度约为8.68%,其中正确的有________.
22.某景区为了解游客人数的变化规律,提高旅游服务质量,收集并整理了某月(30天)接待游客人数(单位:万人)的数据,绘制了下面的统计图和统计表:
根据以上信息,以下四个判断中,正确的是_________.(填写所有正确结论的序号)
①该景区这个月游玩环境评价为“拥挤或严重拥挤”的天数仅有4天;
②该景区这个月每日接待游客人数的中位数在5~10广域网人之间;
③该景区这个月平均每日接待游客人数低于5万人;
④这个月1日至5日的五天中,如果某人曾经随机选择其中的两天到该景区游玩,那么他“这两天游玩环境评价均为好”的可能性为.
23.某校九年级数学兴趣小组的同学调查了若干名家长对“初中学生带手机上学”现象的看法,统计整理并制作了如下的条形与扇形统计图,则表示“无所谓”的家长人数为________.
三、解答题
24.小颖同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:
请根据以上不完整的统计图提供的信息,解答下列问题:
(1)小颖同学共调查了多少名居民的年龄,扇形统计图中a,b各等于多少?
(2)补全条形统计图;
(3)若该辖区年龄在0~14岁的居民约有1500人,请估计年龄在15~59岁的居民的人数.
25.中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对七年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如下所示:
(1)统计表中的a=________,b=___________,c=____________;
(2)请将频数分布表直方图补充完整;
(3)求所有被调查学生课外阅读的平均本数;
(4)若该校七年级共有1200名学生,请你分析该校七年级学生课外阅读7本及以上的人数.
26.为了把赣州建成文明城市,市政府在每个红绿灯处设置了志愿者文明监督岗,志愿者老刘某天在市内的一个十字路口,对行人及骑自行车和电动车闯红灯的人数进行了统计.统计方法如下:
①时间:上午7:00~12:00,分5个时间段,每个时间段时长为1小时;
②在每个时间段里,随机选择一个红绿灯周期,每个红绿灯周期是90秒;
③对闯红灯和未闯红灯的人数进行统计.
下图是志愿者老刘对各时间段的一个红绿灯周期内闯红灯的人数制作的条形统计图和扇形统计图,但均不完整.请你根据统计图解答下列问题.
(1)估计这一天上午7:00~12:00在这个十字路口共有多少人闯红灯;
(2)请你把条形统计图补充完整;
(3)志愿者老刘统计,各时间段的一个红绿灯周期内闯红灯的人数占通过该十字路口人数的百分比依次是:15%,20%,12%,15%,25%.这一天上午7:00~12:00这一时间段中,该十字路口平均每小时大约有多少人通过?
27.促进青少年健康成长是实施“健康中国”战略的重要内容.为了引导学生积极参与体育运动,某校举办了一分钟跳绳比赛,随机抽取了40名学生一分钟跳绳的次数进行调查统计,并根据调查统计结果绘制了如表格和统计图:
等级
次数
频率
不合格
100≤x120
a
合格
120≤x140
b
良好
140≤x160
优秀
160≤x180
请结合上述信息完成下列问题:
(1)a= ,b= ;
(2)请补全频数分布直方图;
(3)在扇形统计图中,“良好”等级对应的圆心角的度数是 ;
(4)若该校有2000名学生,根据抽样调查结果,请估计该校学生一分钟跳绳次数达到合格及以上的人数.
参考答案
1.A
【分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断.
【详解】
解:(1)对疫情后某班学生心理健康状况的调查,适合全面调查;
(2)对某大型自然保护区树木高度的调查,适合抽样调查;
(3)对义乌市市民实施低碳生活情况的调查,适合抽样调查;
(4)对某个工厂口罩质量的调查,适合抽样调查.
故选:A.
【点拨】
本题考查了抽样调查和全面调查的区别.选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
2.D
【分析】
结合题意,根据全面调查和抽样调查的性质,对各个选项逐个分析,即可得到答案.
【详解】
对我市中学生近视情况的调查,适合抽样调查,故选项A不符合题意;
对我市市民国庆出游情况的调查,适合抽样调查,故选项B不符合题意;
对全国人民掌握新冠防疫知识情况的调查,适合抽样调查,故选项C不符合题意;
对我国自行研制的大型飞机C919各零部件质量情况的调查,适合全面调查,故选项D符合题意;
故选:D.
【点拨】
本题考查了统计调查的知识;解题的关键是熟练掌握全面调查和抽样调查的性质,从而完成求解.
3.D
【分析】
利用方差的意义以及平均数的求法和事件类型进行判断即可;
【详解】
为了了解全国初中学生的眼睛近视情况,适宜采用抽样调查,故A错误;
“每天太阳从西边出来”是不可能事件,故B错误;
∵2>1.2,∴乙的射击成绩比甲稳定,故C错误;
,故D正确;
故答案选D.
【点拨】
本题主要考查了全面调查与抽样调查、随机事件和方差,准确分析判断是解题的关键.
4.A
【分析】
分析折线统计图,横轴表示年份,纵轴表示的是增长率,只要增长率是正数,则是增长,若是负数就是减少,根据统计图表示的变化情况即可求出答案.
【详解】
解:由折线统计图可知:
2014年至2017年生产总值的年增长率分别为12.1%,11.0%,5.7%,5.1%,则呈现下降趋势;
2018年至2020年的生产总值的年增长率分别为8.2%,11.2%,12.7%,呈现逐年增长趋势;
则从2014年至2020年,该市每年的国内生产总值始终在增长,只是长的有快有慢,所以错误的是A.
故选:A.
【点拨】
本题考查的是折线统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.折线统计图表示的是事物的变化情况.
5.C
【分析】
根据统计图中的数据,可以判断各个选项中的说法是否合理,从而可以解答本题.
【详解】
解:由图1可得,
从1月到4月,电子产品销售总额为85+80+60+65=290(万元),故选项A中的说法合理;
由图2可得,平板电脑2﹣4月的销售额占当月电子产品销售总额的百分比与1月份相比都下降了,故选项B中的说法合理;
由图1可知,平板电脑4月份的销售额为65×17%=11.05(万元),3月份的销售额为60×18%=10.8(万元),故平板电脑4月份的销售额比3月份有所上升,故选项C中的说法不合理;
平板电脑1月份销售额为85×23%=19.55(万元),2月份销售额为80×15%=12(万元),3月份的销售额为60×18%=10.8(万元),4月份的销售额为65×17%=11.05(万元),故今年1﹣4月中,平板电脑售额最低的是3月,故选项D中的说法合理;
故选:C.
【点拨】
本题考查了条形统计图、折线统计图,解答本题的关键是明确题意,利用数形结合的思想解答.
6.C
【分析】
利用被抽到的不合格人数除以其所占百分比即可求得抽取的总人数,根据被抽取的总人数减去成绩“优秀”成绩“合格”及成绩“不合格”的人数即可求得竞赛成绩“良好”的人数;根据成绩为“优秀”和“良好”的人数和除以被抽取的总人数与成绩“合格”的人数除以被抽取的总人数相比即可求解;根据求扇形统计图圆心角的即可判断.
【详解】
A、样本容量为,故A正确;
B、所抽取学生中,竞赛成绩“良好”的人数(人),故B正确;
C、所抽取学生中,成绩为“优秀”和“良好”的人数和为人,成绩“合格”的人数为22人,因样本容量为60,故所抽取的学生中,成绩为“优秀”和“良好”的人数占比和应高于成绩“合格”的人数占比,故C错误;
D、,故D正确.
故选:C.
【点拨】
本题考查条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解题的关键,条形统计图能清楚地表示出每个项目的数据;扇形统计图能直接反映出部分占总体的百分比大小.
7.A
【分析】
利用样本估计总体的思想解决问题即可.
【详解】
解:全市男生的身高不高于的人数=,
故选:A.
【点拨】
本题考查频数分布表,样本估计总体等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
8.D
【分析】
由折线统计图的变化趋势可判断①,计算出每个月份中手机用户占总人数的比例即可判断②、③.
【详解】
解:①2015年12月~2017年6月,我国在线教育用户规模逐渐上升,此结论正确;
②2015年12月~2017年6月,我国手机在线教育课程用户规模占在线教育用户规模的比例分别为48.15%、42.30%、71.19%、83.11%,此结论错误;
③2017年6月,我国手机在线教育课程用户规模超过在线教育用户规模的70%,此结论正确;
故选:D.
【点拨】
此题主要考查了折线统计图,利用折线统计图获取正确信息是解题关键.
9.D
【分析】
结合条形图和扇形图,求出样本人数,进行解答即可.
【详解】
根据直方图可知第二小组人数为10人,根据扇形图知第二小组占样本容量数的,则抽取样本人数为人,故B选项正确;
所以,第四小组人数为人,故A选项正确;
第五小组对应的圆心角度数为,故D选项错误;
用样本估计总体,该校“一分钟跳绳”成绩优秀的人数约为人,故C选项正确;
故选:D.
【点拨】
本题综合考查总体、个体、样本、样本容量,以及扇形统计图和频数(率)分布直方图.准确理解总体、个体、样本、样本容量、扇形统计图和频数(率)分布直方图等的相关概念是关键.
10.C
【分析】
获奖人次共计17+3+1+5+2+1+12+2+1=44人次,减去只获两项奖的13人计13×2=26人次,则剩下44-13×2=18人次,27-13=14人,这14人中有只获一次奖的,有获三次以上奖的.
【详解】
解:根据题意,要使“该班获得奖励最多的一位同学”获奖最多,则让剩下的14人中的一人获奖最多,其余14-1=13人获奖最少,只获一项奖励,则获奖最多的人获奖项目为18-13=5项.
故选C.
【点拨】
本题主要考查从统计表中获取信息的能力,解决本题的关键是要熟练掌握从统计表中获取信息的方法.
11.甲班
【分析】
分别求出甲班与乙班成绩为D等级的人数进行比较即可.
【详解】
由频数分布直方图知甲班成绩为D等级的人数为13人,
由扇形统计图知乙班成绩为D等级的人数为40×30%=12,
∴D等级较多的人数是甲班,
故答案为甲班.
【点拨】
本题考查了频数分布直方图,扇形统计图,读懂统计图,从中找到必要的信息是解题的关键.
12.16000
【分析】
用毕业生总人数乘以“综合素质”等级为A的学生所占的比即可求得结果.
【详解】
∵A,B,C,D,E五个等级在统计图中的高之比为2:3:3:1:1,
∴该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为80000×=16000,
故答案为16000.
【点拨】
本题考查了条形统计图的应用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
13.0.25
【解析】
【分析】根据“频率=频数÷总数”即可求得答案.
【详解】一共有200个学生,20﹣30这个小组的频数为50,
所以,20﹣30元这个小组的组频率是50÷200=0.25,
故答案为0.25.
【点拨】本题考查了频率,属于简单题,熟记“频率=频数÷总数”是解题的关键.
14.10
【解析】
试题分析:根据喜爱新闻类电视节目的人数和所占的百分比,即可求出总人数;根据总人数和喜爱动画类电视节目所占的百分比,求出喜爱动画类电视节目的人数,进一步利用减法可求喜爱“体育”节目的人数.
5÷10%=50(人),
50×30%=15(人),
50﹣5﹣15﹣20=10(人).
故答案为10.
考点:条形统计图;扇形统计图.
15.2040
【解析】
试题解析:由题意得出:70名同学一共借书:2×5+30×3+20×4+5×15=255(本),
故该校九年级学生在此次读书活动中共读书:56070×255=2040(本).
故答案为2040.
16.250
【分析】
由扇形统计图可知,赞成举办郊游的学生占1-40%-35%=25%,根据赞成举办文艺演出的人数与对应的百分比可求出总人数,由此即可解决.
【详解】
400÷40%=1000(人),
1000×(1-40%-35%)=1000×25%=250(人),
故答案为250.
【点拨】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
17.8
【解析】
试题分析:依题意,得:,
数据的平均数
=
考点:(1)平均数的计算;(2)整体思想
18.0.575
【分析】
由表中可知这几年国内生产总值增长的数量,用总的增长数量除以年数可以得出这几年我国国内生产总值平均比上一年增长的数量
【详解】
(0.7+0.6+0.3+0.7)÷4=0.575.
故答案为0.575.
【点拨】
本题结合增长率的有关计算考查统计的有关知识.
19.220;
【解析】
【分析】
根据调查家长的人数与调查学生的人数相等结合条形统计图可先求出学生的人数,即为家长人数,然后再减去“赞成”与“无所谓”的人数即可得.
【详解】
120+60+140=320,
320-30-70=220,
即家长反对学生带手机进校园的人数有220人,
故答案为220.
【点拨】
本题考查了条形统计图,读懂统计图,从图中找到必要的信息是解题的关键.
20.5
【解析】
【分析】根据频率=频数/总数,可得抽取的学生总数是200人,再求出喜欢篮球人数m,从而求出喜欢足球人数,再计算相应频率n,最后可求mm.
【详解】由频率=频数/总数,可得抽取的学生总数是:= (人),
所以,喜欢篮球人数:200×0.25=50(人),即m=50;
所以,喜欢足球人数:200-80-50-50=20,
所以,频率n=,
所以,mn=0.1×50=5.
故答案为:5
【点拨】从统计表中得到必要的信息是解决问题的关键.用到的知识点为:频率=频数与总数之比.
21.①③
【解析】
【分析】
根据条形统计图和折线图的信息,分别进行判断,即可得到答案.
【详解】
解:由统计图可以看出2013~2017年,北京市研究与试验经费支出连年增高,故①正确;
2014年北京市研究与试验经费支出较上一年实际增长83.8亿元,2015年北京市研究与试验经费支出较上一年实际增长115.2亿元,2016年北京市研究与试验经费支出较上一年实际增长100.6亿元,2017年北京市研究与试验经费支出较上一年实际增长110.7亿元,2014~2017年,北京市研究与试验经费支出较上一年实际增长最多的是2015年,故②错误:
由统计图可得2015年北京市研究与试验经费支出的增长速度为9.1%,2016年北京市研究与试验经费支出的增长速度为7.3%,故③正确;
2013~2017年,北京市研究与试验经费支出的平均增长速度约为,故④错误.
∴正确的有①③;
故答案为:①③.
【点拨】
本题考查了条形统计图和折线图,解题的关键是理解题意,灵活运用条形统计图和折线图的知识解决问题.错因分析:①不能正确从统计图中找到解题所需的数据;②计算每年的实际增长量及近五年增速平均值时出错
22.①④
【分析】
利用统计图与统计表获取的信息逐项判定即可.
【详解】
解:①根据统计表可得日接待游客人数10≤x< 15为拥挤,15≤x< 20为严重拥挤,由统计图可知,游玩环境评价为“拥挤或严重拥挤”,1日至5日有2天,25日-30日有2天,共4天,故①正确;
②本题中位数是指将30天的游客人数从小到大排列,第15与第16位的和除以2,根据统计图可知0≤x < 5的有16天,从而中位数位于0≤x< 5范围内,故②错误;
③从统计图可以看出,接近10的有6天,大于10而小于15的有2天,15以上的有2天,
10上下的估算为10,则(10×8+15×2-5×10)÷16=3.25,可以考虑为给每个0至5的补上3.25,则大部分大于5,而0至5范围内有6天接近5,故平均数一定大于5,故③错误;
④由题意可知“这两天游玩环境评价均为好”的可能性为,故④正确.
故答案为①④.
【点拨】
本题考查了中位数、平均数及可能性等知识,利用统计图与统计表获取的有效信息是解答本题的关键.
23.40
【解析】
【分析】
根据赞同的人数和所占的百分比求出接受这次调查的家长人数;再根据表示“无所谓”的家长所占的百分比和总人数,求出表示“无所谓”的家长人数即可.
【详解】
解:由条形统计图和扇形统计图可知,赞同的人数是50人,占25%,
∴接受这次调查的家长人数为50÷25%=200人,
∵200×20%=40,
∴表示“无所谓”的家长人数为40人.
故答案为:40.
【点拨】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
24.(1)300,a=20%,b=12%;(2)答案见解析;(3)5100.
【分析】
(1)根据15——40岁的居民所占百分比求出总人数,再得各段的百分比,从而求出a,b的值,
(2)见下图,
(3)根据年龄在0~14岁的居民所占比重求出总人数,乘以年龄在15~59岁的居民的占比即可.
【详解】
解:(1)根据题意得:
144÷48%=300(名),a=60÷300×100%=20%,b=36÷300×100%=12%,(2)41~59岁的居民有300×20%=60(人),补图如下:
(3)根据题意得:
总人数:1500÷20%=7500(人),7500×(20%+48%)=5100(人).
【点拨】
本题考查了统计图的实际应用,用样本估计总体,中等难度,从统计图中得到有用信息是解题关键.
25.(1)a=10,b=0.28,c=50;(2)补图见解析;(3)6.4本;(4)528人.
【解析】
【分析】
(1)首先求出总人数,再根据频率,总数,频数的关系即可解决问题;
(2)根据a的值画出条形图即可;
(3)根据平均数的定义计算即可;
(4)用样本估计总体的思想解决问题即可;
【详解】
(1)由题意c==50,
a=50×0.2=10,b==0.28,c=50;
故答案为a=10,b=0.28,c=50;
(2)将频数分布表直方图补充完整,如图所示:
(3)所有被调查学生课外阅读的平均本数为:
(5×10+6×18+7×14+8×8)÷50=320÷50=6.4(本).
(4)该校七年级学生课外阅读7本及以上的人数为:
(0.28+0.16)×1200=528(人).
26.(1)估计这一天上午7:00~12:00在这个十字路口共有4000人闯红灯.;(2)补充完整条形统计图见解析;(3)这一天上午7:00~12:00这一时间段中,该十字路口平均每小时大约有4413人通过.
【解析】
【分析】(1)计算11:00~12:00的人数,再除以可得总数;
(2)分别计算人数,再画图;
(3)先求出各个时段通过的总人数,再除以5可得.
【详解】解:(1)据题意可得,
可以估计这一天上午7:00~12:00在这个十字路口共有4000人闯红灯.
(2)7:00~8:00每个周期内人数:100×=20,10:00~11:00每个周期内人数:100-20-15-40=25,如图.
(3)
∴这一天上午7:00~12:00这一时间段中,该十字路口平均每小时大约有4413人通过.
【点拨】本题考核知识点:数据的分析.解题关键点:从统计图获取信息,用样本估计总体.
27.(1)0.1;0.35;(2)见解析;(3)108°;(4)1800名
【分析】
(1)根据频数分布直方图中不合格的数除总数即可求得a值;同理得出良好的人数,再根据扇形统计图求出优秀的人数即可得出合格的人数,再除总数即可求得b的值.
(2)由(1)可得;
(3)由(1)得出良好的人数除总人数,再乘360°即可.
(4)先求出40个人合格及以上的人数占总人数的频率再乘2000即可解答.
【详解】
解:(1)根据频数分布直方图可知:a=4÷40=0.1,
因为40×25%=10,
所以b=(40﹣4﹣12﹣10)÷40=14÷40=0.35,
故答案为:0.1;0.35;
(2)如图,即为补全的频数分布直方图;
(3)在扇形统计图中,“良好”等级对应的圆心角的度数是360°×=108°;
故答案为:108°;
(4)因为2000×=1800,
所以估计该校学生一分钟跳绳次数达到合格及以上的人数是1800.
【点拨】本题主要考查频数与频率,解题关键是熟练掌握频率=频数÷总数.
专题8.2 认识概率(提高篇)专项练习-【挑战满分】2021-2022学年八年级数学下册阶段性复习精选精练(苏科版): 这是一份专题8.2 认识概率(提高篇)专项练习-【挑战满分】2021-2022学年八年级数学下册阶段性复习精选精练(苏科版),共22页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
初中数学苏科版八年级下册第10章 分式综合与测试复习练习题: 这是一份初中数学苏科版八年级下册第10章 分式综合与测试复习练习题,共20页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
专题7.2 数据的收集、整理、描述(提高篇)专项练习-【挑战满分】2021-2022学年八年级数学下册阶段性复习精选精练(苏科版): 这是一份专题7.2 数据的收集、整理、描述(提高篇)专项练习-【挑战满分】2021-2022学年八年级数学下册阶段性复习精选精练(苏科版),共24页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。