2020-2021学年2.2 平面向量的线性运算教案设计
展开
这是一份2020-2021学年2.2 平面向量的线性运算教案设计
2.2.1 向量的加法运算及其几何意义教学目标:掌握向量的加法运算,并理解其几何意义; 会用向量加法的三角形法则和平行四边形法则作两个向量的和向量,培养数形结合解决问题的能力; 通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法;教学重点:会用向量加法的三角形法则和平行四边形法则作两个向量的和向量.教学难点:理解向量加法的定义.教学思路:一、设置情景:复习:向量的定义以及有关概念强调:向量是既有大小又有方向的量.长度相等、方向相同的向量相等.因此,我们研究的向量是与起点无关的自由向量,即任何向量可以在不改变它的方向和大小的前提下,移到任何位置情景设置:(1)某人从A到B,再从B按原方向到C, 则两次的位移和:(2)若上题改为从A到B,再从B按反方向到C, 则两次的位移和:(3)某车从A到B,再从B改变方向到C, 则两次的位移和:A BCA BCA B CC A B(4)船速为,水速为,则两速度和:二、探索研究:1、向量的加法:求两个向量和的运算,叫做向量的加法.2、三角形法则(“首尾相接,首尾连”)ABCa+ba+baabbabba+ba如图,已知向量a、b.在平面内任取一点,作=a,=b,则向量叫做a与b的和,记作a+b,即 a+b, 规定: a + 0-= 0 +aa a探究:(1)两向量的和与两个数的和有什么关系? 两向量的和仍是一个向量;(2)当向量与不共线时, |+|
相关教案
这是一份人教版新课标A必修42.2 平面向量的线性运算教案设计
这是一份人教版新课标A必修4第二章 平面向量2.2 平面向量的线性运算教案
这是一份数学必修4第二章 平面向量2.2 平面向量的线性运算教案