高中数学人教版新课标A必修42.5 平面向量应用举例教案设计
展开2.2.1 向量的加法运算及其几何意义
教学目标:
1、 掌握向量的加法运算,并理解其几何意义;
2、 会用向量加法的三角形法则和平行四边形法则作两个向量的和向量,培养数形结合解决问题的能力;
3、 通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法;
教学重点:会用向量加法的三角形法则和平行四边形法则作两个向量的和向量.
教学难点:理解向量加法的定义.
教学思路:
一、设置情景:
1、 复习:向量的定义以及有关概念
强调:向量是既有大小又有方向的量.长度相等、方向相同的向量相等.因此,我们研究的向量是与起点无关的自由向量,即任何向量可以在不改变它的方向和大小的前提下,移到任何位置
2、 情景设置:
(1)某人从A到B,再从B按原方向到C, 则两次的位移和:
(2)若上题改为从A到B,再从B按反方向到C, 则两次的位移和:
(3)某车从A到B,再从B改变方向到C, 则两次的位移和:
(4)船速为,水速为,则两速度和:
二、探索研究:
1、向量的加法:求两个向量和的运算,叫做向量的加法.
2、三角形法则(“首尾相接,首尾连”)
如图,已知向量a、b.在平面内任取一点,作=a,=b,则向量叫做a与b的和,记作a+b,即 a+b, 规定: a + 0-= 0 + a
探究:(1)两向量的和与两个数的和有什么关系? 两向量的和仍是一个向量;
(2)当向量与不共线时, |+|<||+||;什么时候|+|=||+||,什么时候|+|=||-||,
当向量与不共线时,+的方向不同向,且|+|<||+||;
当与同向时,则+、、同向,且|+|=||+||,
当与反向时,若||>||,则+的方向与相同,且|+|=||-||;
若||<||,则+的方向与相同,且|+b|=||-||.
(3)“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点,可以推广到n个向量连加
3.例一、已知向量、,求作向量+
作法:在平面内取一点,作 ,则.
4.加法的交换律和平行四边形法则
问题:上题中+的结果与+是否相同? 验证结果相同
从而得到:1)向量加法的平行四边形法则(对于两个向量共线不适应)
2)向量加法的交换律:+=+
5.你能证明:向量加法的结合律:(+) +=+ (+) 吗?
6.由以上证明你能得到什么结论? 多个向量的加法运算可以按照任意的次序、任意的组合来进行.
三、应用举例:
例二(P83—84)略
变式1、一艘船从A点出发以的速度向垂直于对岸的方向行驶,船的实际航行速度的大小为,求水流的速度.
变式2、一艘船从A点出发以的速度向垂直于对岸的方向行驶,同时河水的流速为,船的实际航行的速度的大小为,方向与水流间的夹角是,求和.
练习:P84面1、2、3、4题
四、小结
1、向量加法的几何意义;2、交换律和结合律;3、|+| ≤ || + ||,当且仅当方向相同时取等号.
五、课后作业:《习案》作业十八。
六、备用习题 思考:你能用向量加法证明:两条对角线互相平分的四边形是平行四边形吗?
2020-2021学年第二章 平面向量2.2 平面向量的线性运算教学设计: 这是一份2020-2021学年第二章 平面向量2.2 平面向量的线性运算教学设计
人教版新课标A必修42.2 平面向量的线性运算教学设计及反思: 这是一份人教版新课标A必修42.2 平面向量的线性运算教学设计及反思
2020-2021学年2.2 平面向量的线性运算教学设计: 这是一份2020-2021学年2.2 平面向量的线性运算教学设计