年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    高二数学同步检测 2-1-1-2《类比推理》 新人教A版选修2-2

    立即下载
    加入资料篮
    高二数学同步检测 2-1-1-2《类比推理》 新人教A版选修2-2第1页
    高二数学同步检测 2-1-1-2《类比推理》 新人教A版选修2-2第2页
    高二数学同步检测 2-1-1-2《类比推理》 新人教A版选修2-2第3页
    还剩6页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高二数学同步检测 2-1-1-2《类比推理》 新人教A版选修2-2

    展开

    选修2-2  2.1.1 第2课时  类比推理 一、选择题1.下列说法正确的是(  )A.由合情推理得出的结论一定是正确的B.合情推理必须有前提有结论C.合情推理不能猜想D.合情推理得出的结论无法判定正误[答案] B[解析] 由合情推理得出的结论不一定正确,A不正确;B正确;合情推理的结论本身就是一个猜想,C不正确;合情推理结论可以通过证明来判定正误,D也不正确,故应选B.2.下面几种推理是合情推理的是(  )①由圆的性质类比出球的有关性质②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°③教室内有一把椅子坏了,则该教室内的所有椅子都坏了④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得出凸多边形的内角和是(n-2)·180°A.①②        B.①③④C.①②④  D.②④[答案] C[解析] ①是类比推理;②④都是归纳推理,都是合情推理.3.三角形的面积为S(abcrabc为三角形的边长,r为三角形内切圆的半径,利用类比推理,可以得到四面体的体积为(  )A.VabcB.VShC.V(S1S2S3S4)r,(S1S2S3S4分别为四面体四个面的面积,r为四面体内切球的半径)D.V(abbcac)h(h为四面体的高)[答案] C[解析] 边长对应表面积,内切圆半径应对应内切球半径.故应选C.4.类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的下列哪些性质,你认为比较恰当的是(  )①各棱长相等,同一顶点上的任两条棱的夹角都相等②各个面都是全等的正三角形,相邻两个面所成的二面角都相等③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等A.①  B.①②C.①②③  D.③[答案] C[解析] 正四面体的面(或棱)可与正三角形的边类比,正四面体的相邻两面成的二面角(或共顶点的两棱的夹角)可与正三角形相邻两边的夹角类比,故①②③都对.5.类比三角形中的性质:(1)两边之和大于第三边(2)中位线长等于底边的一半(3)三内角平分线交于一点可得四面体的对应性质:(1)任意三个面的面积之和大于第四个面的面积(2)过四面体的交于同一顶点的三条棱的中点的平面面积等于第四个面面积的(3)四面体的六个二面角的平分面交于一点其中类比推理方法正确的有(  )A.(1)  B.(1)(2)C.(1)(2)(3)  D.都不对[答案] C[解析] 以上类比推理方法都正确,需注意的是类比推理得到的结论是否正确与类比推理方法是否正确并不等价,方法正确结论也不一定正确.6.由代数式的乘法法则类比推导向量的数量积的运算法则:①“mnnm”类比得到“a·bb·a”;②“(mn)tmtnt”类比得到“(abca·cb·c”;③“(m·n)tm(n·t)”类比得到“(a·bca·(b·c)”;④“t≠0,mtxtmx”类比得到“p≠0,a·px·pax”;⑤“|m·n|=|m|·|n|”类比得到“|a·b|=|a|·|b|”;⑥“”类比得到“”.以上式子中,类比得到的结论正确的个数是(  )A.1    B.2    C.3    D.4[答案] B[解析] 由向量的有关运算法则知①②正确,③④⑤⑥都不正确,故应选B. 7.(2010·浙江温州)如图所示,椭圆中心在坐标原点,F为左焦点,当时,其离心率为,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e等于(  )A.  B.C.-1  D.+1[答案] A[解析] 如图所示,设双曲线方程为=1(a>0,b>0),F(-c,0),B(0,b),A(a,0)=(cb),=(-ab)又∵,∴·b2ac=0c2a2ac=0e2e-1=0ee(舍去),故应选A.8.六个面都是平行四边形的四棱柱称为平行六面体.如图甲,在平行四边形ABD中,有AC2BD2=2(AB2AD2),那么在图乙中所示的平行六面体ABCDA1B1C1D1中,ACBDCADB等于(  )A.2(AB2AD2AA)  B.3(AB2AD2AA)C.4(AB2AD2AA)  D.4(AB2AD2)[答案] C[解析] ACBDCADB=(ACCA)+(BDDB)=2(AAAC2)+2(BBBD2)=4AA+2(AC2BD2)=4AA+4AB2+4AD2,故应选C.9.下列说法正确的是(  )A.类比推理一定是从一般到一般的推理B.类比推理一定是从个别到个别的推理C.类比推理是从个别到个别或一般到一般的推理D.类比推理是从个别到一般的推理[答案] C[解析] 由类比推理的定义可知:类比推理是从个别到个别或一般到一般的推理,故应选C.10.下面类比推理中恰当的是(  )A.若“a·3=b·3,则ab”类比推出“若a·0=b·0,则abB.“(ab)cacbc”类比推出“(a·b)cac·bcC.“(ab)cacbc”类比推出“(c≠0)”D.“(ab)nanbn”类比推出“(ab)nanbn[答案] C[解析] 结合实数的运算知C是正确的.二、填空题11.设f(x)=,利用课本中推导等差数列前n项和公式的方法,可求得f(-5)+f(-4)+…+f(0)+…+f(5)+f(6)的值为________.[答案] 3[解析] 本题是“方法类比”.因等比数列前n项和公式的推导方法是倒序相加,亦即首尾相加,那么经类比不难想到f(-5)+f(-4)+…+f(0)+…+f(5)+f(6)=[f(-5)+f(6)]+[f(-4)+f(5)]+…+[f(0)+f(1)],而当x1x2=1时,有f(x1)+f(x2)=,故所求答案为6×=3.12.(2010·广州高二检测)若数列{an}是等差数列,对于bn(a1a2+…+an),则数列{bn}也是等差数列.类比上述性质,若数列{cn}是各项都为正数的等比数列,对于dn>0,则dn=________时,数列{dn}也是等比数列.[答案]  13.在以原点为圆心,半径为r的圆上有一点P(x0y0),则过此点的圆的切线方程为x0xy0yr2,而在椭圆=1(a>b>0)中,当离心率e趋近于0时,短半轴b就趋近于长半轴a,此时椭圆就趋近于圆.类比圆的面积公式,在椭圆中,S=________.类比过圆上一点P(x0y0)的圆的切线方程,则过椭圆=1(a>b>0)上一点P(x1y1)的椭圆的切线方程为________.[答案] π·a·b·x·y=1[解析] 当椭圆的离心率e趋近于0时,椭圆趋近于圆,此时ab都趋近于圆的半径r,故由圆的面积S=πr2=π·r·r,猜想椭圆面积S=π·a·b,其严格证明可用定积分处理.而由切线方程x0·xy0·yr2变形得·x·y=1,则过椭圆上一点P(x1y1)的椭圆的切线方程为·x·y=1,其严格证明可用导数求切线处理.14.在等差数列{an}中,若a10=0,则有等式a1a2+…+ana1a2+…+a19-n(n<19,nN*)成立,类比上述性质,相应地:在等比数列{bn}中,若b9=1,则有等式__________成立.[答案] b1b2bnb1b2b17-n(n<17,nN*)[解析] 解法1:从分析所提供的性质入手:由a10=0,可得aka20-k=0,因而当n<19-n时,有a1a2+…+a19-na1a2+…+anan+1an+2+…+a19-nan+1an+2+…+a19-n=0,∴等式成立.同理可得n>19-n时的情形.由此可知:等差数列{an}之所以有等式成立的性质,关键在于在等差数列中有性质:an+1a19-n2a10=0,类似地,在等比数列{bn}中,也有性质:bn+1·b17-nb=1,因而得到答案:b1b2bnb1b2b17-n(n<17,nN*).解法2:因为在等差数列中有“和”的性质a1a2+…+ana1a2+…+a19-n(n<19,nN*)成立,故在等比数列{bn}中,由b9=1,可知应有“积”的性质b1b2bnb1b2b17-n(n<17,nN*)成立. (1)证明如下:当n<8时,等式(1)为b1b2bnb1b2bnbn+1b17-n即:bn+1·bn+2b17-n=1.(2)b9=1,∴bk+1·b17-kb=1.bn+1bn+2b17-nb=1.∴(2)式成立,即(1)式成立;n=8时,(1)式即:b9=1显然成立;当8<n<17时,(1)式即:b1b2b17-n·b18-n·…bnb1b2b17-n即:b18-n·b19-nbn=1(3)b9=1,∴b18-k·bkb=1b18-nb19-n·…·bnb=1∴(3)式成立,即(1)式成立.综上可知,当等比数列{bn}满足b9=1时,有:b1b2bnb1b2b17-n(n<17,nN*)成立.三、解答题15.已知:等差数列{an}的公差为d,前n项和为Sn,有如下的性质:(1)anam+(nmd.(2)若mnpq,其中,mnpqN*,则amanapaq.(3)若mn=2pmnpN*,则aman=2ap.(4)SnS2nSnS3nS2n构成等差数列.类比上述性质,在等比数列{bn}中,写出相类似的性质.[解析] 等比数列{bn}中,公比q,前n项和Sn.(1)通项anam·qnm.(2)若mnpq,其中mnpqN*am·anap·aq.(3)若mn=2p,其中,mnpN*,则aam·an.(4)SnS2nSnS3nS2n构成等比数列.16.先解答(1),再根据结构类比解答(2).(1)已知ab为实数,且|a|<1,|b|<1,求证:ab+1>ab.(2)已知abc均为实数,且|a|<1,|b|<1,|c|<1,求证:abc+2>abc.[解析] (1)ab+1-(ab)=(a-1)(b-1)>0.(2)∵|a|<1,|b|<1,|c|<1,据(1)得(abc+1>abcabc+2=[(abc+1]+1>(abc)+1=(ab+1)+c>abc.你能再用归纳推理方法猜想出更一般地结论吗?[点评] (1)与(2)的条件与结论有着相同的结构,通过分析(1)的推证过程及结论的构成进行类比推广得出:(abc+1>abc是关键.用归纳推理可推出更一般的结论:ai为实数,|ai|<1,i=1、2、…、n,则有:a1a2an+(n-1)>a1a2+…+an.17.点P在圆Cx2y2=1上,经过点P的圆的切线方程为xy=1,又点Q(2,1)在圆C外部,容易证明直线2xy=1与圆相交,点R在圆C的内部.直线xy=1与圆相离.类比上述结论,你能给出关于一点P(ab)与圆x2y2r2的位置关系与相应直线与圆的位置关系的结论吗?[解析] 点P(ab)在⊙Cx2y2r2上时,直线axbyr2与⊙C相切;点P在⊙C内时,直线axbyr2与⊙C相离;点P在⊙C外部时,直线axbyr2与⊙C相交.容易证明此结论是正确的.18.我们知道:12=          1,22=(1+1)2=12+2×1+1,32=(2+1)2=22+2×2+1,42=(3+1)2=32+2×3+1,……n2=(n-1)2+2(n-1)+1,左右两边分别相加,得n2=2×[1+2+3+…+(n-1)]+n∴1+2+3+…+n.类比上述推理方法写出求12+22+32+…+n2的表达式的过程.[解析] 我们记S1(n)=1+2+3+…+nS2(n)=12+22+32+…+n2,…Sk(n)=1k+2k+3k+…+nk (kN*).已知13=             1,23=(1+1)3=13+3×12+3×1+1,33=(2+1)3=23+3×22+3×2+1,43=(3+1)3=33+3×32+3×3+1,……n3=(n-1)3+3(n-1)2+3(n-1)+1.将左右两边分别相加,得S3(n)=[S3(n)-n3]+3[S2(n)-n2]+3[S1(n)-n]+n.由此知S2(n)=.  

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map