中考专区一轮复习导学案及答案
展开聚焦考点☆温习理解
1、反比例函数的概念
一般地,函数(k是常数,k0)叫做反比例函数。反比例函数的解析式也可以写成的形式。自变量x的取值范围是x0的一切实数,函数的取值范围也是一切非零实数。
2、反比例函数的图像
反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。由于反比例函数中自变量x0,函数y0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
3、反比例函数的性质
当k>0时,函数图像的两个分支分别在第一、三象限。在每个象限内,y随x 的增大而减小。
当k<0时,函数图像的两个分支分别在第二、四象限。在每个象限内,随x 的增大而增大。
4、反比例函数解析式的确定
确定及诶是的方法仍是待定系数法。由于在反比例函数中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。
5、反比例函数中反比例系数的几何意义
如下图,过反比例函数图像上任一点P作x轴、y轴的垂线PM,PN,则所得的矩形PMON的面积S=PMPN=。
。
名师点睛☆典例分类
考点典例一、反比例函数的性质
【例1】. (2019•湖北省仙桃市•3分)反比例函数y=﹣,下列说法不正确的是( )
A.图象经过点(1,﹣3)B.图象位于第二、四象限
C.图象关于直线y=x对称D.y随x的增大而增大
【举一反三】
1. (2018湖南常德中考模拟)在同一平面直角坐标系中,函数y=mx+m(m≠0)与(m≠0)的图象可能是( )
A. B.
C. D.
2. (2019•广西)若点(–1,y1),(2,y2),(3,y3)在反比例函数y=(k<0)的图象上,则y1,y2,y3的大小关系是
A.y1>y2>y3B.y3>y2>y1
C.y1>y3>y2D.y2>y3>y1
考点典例二、反比例函数图象上点的坐标特征
【例2】(2019•北京)在平面直角坐标系xOy中,点A(a,b)(a>0,b>0)在双曲线y=上,点A关于x轴的对称点B在双曲线y=,则k1+k2的值为__________.
【举一反三】
1. (山东省济南市长清区2018届九年级3月质量(模拟)检测)如图,△ABC的三个顶点分别为, , .若反比例函数在第一象限内的图象与△ABC有公共点,则k的取值范围是__________.
2.(陕西西安市西北工业大学附属中学2018届九年级第九次适应性训练)如图, 的一条直角边在轴上,双曲线经过斜边中点,与另一直角边交于点,若,则的值为__________.
考点典例三、反比例函数图象上点的坐标与方程的关系
【例3】(2019•山东威海•3分)如图,在平面直角坐标系中,点A,B在反比例函数y=(k≠0)的图象上运动,且始终保持线段AB=4的长度不变.M为线段AB的中点,连接OM.则线段OM长度的最小值是 (用含k的代数式表示).
【举一反三】
1.(山东省龙口市兰高镇兰高学校2018届九年级上学期期末模拟)如图,正方形的顶点、在反比例函数的图象上,顶点、分别在轴、轴的正半轴上,再在其右侧作正方形,顶点在反比例函数的图象上,顶点在轴的正半轴上,则点的坐标为____.
2. (湖南省邵阳县黄亭市镇中学2017~2018学年九年级数学(上)期末检测)直线y=ax(a>0)与双曲线y=交于A(x1,y1)、B(x2,y2)两点,则4x1y2-3x2y1= __.
考点典例四、反比例函数与一次函数的交点问题
【例4】(2019四川泸州)如图,一次函数y1=ax+b和反比例函数y2的图象相交于A,B两点,则使y1>y2成立的x取值范围是( )
A.﹣2<x<0或0<x<4B.x<﹣2或0<x<4
C.x<﹣2或x>4D.﹣2<x<0或x>4
【举一反三】
1. (2019•四川省广安市•6分)如图,已知A(n,﹣2),B(﹣1,4)是一次函数y=kx+b和反比例函数y=的图象的两个交点.
(1)求反比例函数和一次函数的解析式;
(2)求△AOB的面积.
2. 如图,已知直线与轴、轴相交于、两点,与的图象相交于、两点,连接、.给出下列结论:
①;②;③;④不等式的解集是或.
其中正确结论的序号是__________.
考点典例五、反比例函数的图象和k的几何意义
【例5】(2019·贵州安顺·4分)如图,直线l⊥x轴于点P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于A、B两点,连接OA、OB,已知△OAB的面积为4,则k1﹣k2= .
【举一反三】
1. .如图,点D为矩形OABC的AB边的中点,反比例函数的图象经过点D,交BC边于点E.若△BDE的面积为1,则k =________
2.(2018年四川达州中考模拟)如图,一次函数的图象与x轴,y轴交于A,B两点,与反比例函数的图象相交于C,D两点,分别过C,D两点作y轴,x轴的垂线,垂足为E,F,连接CF,DE.有下列四个结论:
①△CEF与△DEF的面积相等;
②△AOB∽△FOE;
③△DCE≌△CDF;
④AC=BD.
其中正确的是( )
A. ①② B. ①②③ C. ②③④ D. ①②③④
3. (浙江省平阳县2017-2018学年九年级第一学期第二次阶段检测)如图,O为坐标原点,点B在轴的正半轴上,四边形OACB是平行四边形, ,反比例函数在第一象限内的图象经过点A,与BC交于点F.若点F为BC的中点,且△AOF的面积S=12,则点C的坐标为(_____,_____).
课时作业☆能力提升
一、选择题
1. 如图,菱形ABCD的两个顶点B、D在反比例函数y=的图象上,对角线AC与BD的交点恰好是坐标原点O,已知点A(1,1),∠ABC=60°,则k的值是( )
A. ﹣5 B. ﹣4 C. ﹣3 D. ﹣2
2. 在平面直角坐标系中,分别过点,作轴的垂线和 ,探究直线和与双曲线 的关系,下列结论中错误的是
A. 两直线中总有一条与双曲线相交
B. 当=1时,两条直线与双曲线的交点到原点的距离相等
C. 当 时,两条直线与双曲线的交点在y轴两侧
D. 当两直线与双曲线都有交点时,这两交点的最短距离是2
4. (2018江苏南京中考模拟)如图,在平面直角坐标系中,函数与的图象相交于点,则不等式的解集为 ( )
A. B.或
C. D.或
5.(2019山东济宁)如图,点A的坐标是(﹣2,0),点B的坐标是(0,6),C为OB的中点,将△ABC绕点B逆时针旋转90°后得到△A′B′C′.若反比例函数y=的图象恰好经过A′B的中点D,则k的值是( )
A.9B.12C.15D.18
6. (河南省2018年中考数学三模)如图,直线l⊥x轴于点P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为2,则k1﹣k2的值为( )
A. 2 B. 3 C. 4 D. ﹣4
【答案】C
考点:反比例函数系数k的几何意义;反比例函数图象上点的坐标特征.
7. (2019•广西)若点(–1,y1),(2,y2),(3,y3)在反比例函数y=(k<0)的图象上,则y1,y2,y3的大小关系是
A.y1>y2>y3B.y3>y2>y1
C.y1>y3>y2D.y2>y3>y1
平面直角坐标系中,菱形ABCD的顶点A,B在反比例函数(,)的图象上,横坐标分别为1,4,对角线轴.若菱形ABCD的面积为,则k的值为( )
A. B. C. 4 D. 5
二、填空题
9 (2019山东潍坊)如图,Rt△AOB中,∠AOB=90°,顶点A,B分别在反比例函数(x>0)与(x<0)的图象上,则tan∠BAO的值为 .
10. (辽宁省盘锦市2018年中考一模)如图,一次函数的图象与反比例函数的图象相交于A、B两点,当y1>y2时,-1
11. 2019•山西)如图,在平面直角坐标中,点O为坐标原点,菱形ABCD的顶点B在x轴的正半轴上,点A坐标为(–4,0),点D的坐标为(–1,4),反比例函数y=(x>0)的图象恰好经过点C,则k的值为__________.
12. (2018江苏盐城中考模拟)如图,曲线l是由函数y=在第一象限内的图象绕坐标原点O逆时针旋转45°得到的,过点A(-4,4),B(2,2)的直线与曲线l相交于点M、N,则△OMN的面积为 .
13. (2019▪贵州毕节▪5分)如图,在平面直角坐标中,一次函数y=﹣4x+4的图象与x轴、y轴分别交于A.B两点.正方形ABCD的顶点C.D在第一象限,顶点D在反比例函数y=(k≠0)的图象上.若正方形ABCD向左平移n个单位后,顶点C恰好落在反比例函数的图象上,则n的值是 .
14. (2019山东德州)如图,点A1、A3、A5…在反比例函数(x>0)的图象上,点A2、A4、A6……在反比例函数(x>0)的图象上,∠OA1A2=∠A1A2A3=∠A2A3A4=…=∠α=60°,且OA1=2,则An(n为正整数)的纵坐标为 .(用含n的式子表示)
三、解答题
15. (2019•甘肃)如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A(–1,n)、B(2,–1)两点,与y轴相交于点C.
(1)求一次函数与反比例函数的解析式;
(2)若点D与点C关于x轴对称,求△ABD的面积;
(3)若M(x1,y1)、N(x2,y2)是反比例函数y=上的两点,当x1
16. (2019•广东)如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A、B两点,其中点A的坐标为(–1,4),点B的坐标为(4,n).
(1)根据图象,直接写出满足k1x+b>的x的取值范围;
(2)求这两个函数的表达式;
(3)点P在线段AB上,且S△AOP:S△BOP=1:2,求点P的坐标.
17. 如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.
(1)当m=4,n=20时.
①若点P的纵坐标为2,求直线AB的函数表达式.
②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.
(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.
18. (2018年湖北黄石中考)如图1所示,已知:点A(﹣2,﹣1)在双曲线C:y=上,直线l1:y=﹣x+2,直线l2与l1关于原点成中心对称,F1(2,2),F2(﹣2,﹣2)两点间的连线与曲线C在第一象限内的交点为B,P是曲线C上第一象限内异于B的一动点,过P作x轴平行线分别交l1,l2于M,N两点.
(1)求双曲线C及直线l2的解析式;
(2)求证:PF2﹣PF1=MN=4;
(3)如图2所示,△PF1F2的内切圆与F1F2,PF1,PF2三边分别相切于点Q,R,S,求证:点Q与点B重合.(参考公式:在平面坐标系中,若有点A(x1,y1),B(x2,y2),则A、B两点间的距离公式为AB=.)
19. (2019•河南)模具厂计划生产面积为4,周长为m的矩形模具.对于m的取值范围,小亮已经能用“代数”的方法解决,现在他又尝试从“图形”的角度进行探究,过程如下:
(1)建立函数模型
设矩形相邻两边的长分别为x,y,由矩形的面积为4,得xy=4,即y=;由周长为m,得2(x+y)=m,即y=–x+.满足要求的(x,y)应是两个函数图象在第__________象限内交点的坐标.
(2)画出函数图象
函数y=(x>0)的图象如图所示,而函数y=–x+的图象可由直线y=–x平移得到.请在同一直角坐标系中直接画出直线y=–x.
(3)平移直线y=–x,观察函数图象
①当直线平移到与函数y=(x>0)的图象有唯一交点(2,2)时,周长m的值为__________;
②在直线平移过程中,交点个数还有哪些情况?请写出交点个数及对应的周长m的取值范围.
(4)得出结论
若能生产出面积为4的矩形模具,则周长m的取值范围为__________.
中考数学《一轮专题讲义》(41专题)第02讲 实数的计算(原卷版)学案: 这是一份中考数学《一轮专题讲义》(41专题)第02讲 实数的计算(原卷版)学案,共7页。学案主要包含了实数的运算,非负数的性质,实数的大小比较等内容,欢迎下载使用。
中考数学《一轮专题讲义》(41专题)第14讲 反比例函数(解析版)学案: 这是一份中考数学《一轮专题讲义》(41专题)第14讲 反比例函数(解析版)学案,共39页。学案主要包含了三象限,或第二,四象限,反比例函数与一次函数的交点问题,反比例函数的图象和k的几何意义等内容,欢迎下载使用。
中考数学《一轮专题讲义》(41专题)第19讲 统计的应用(原卷版)学案: 这是一份中考数学《一轮专题讲义》(41专题)第19讲 统计的应用(原卷版)学案,共12页。学案主要包含了条形统计图与折线统计图,扇形统计图,频数分布直方图,利用统计量解决实际问题等内容,欢迎下载使用。