所属成套资源:整套数学沪教版(五四制)六年级下学期同步备课课件PPT+教案
- 6.4一元一次方程的应用 课件PPT 课件 14 次下载
- 6.5不等式的性质 课件PPT 课件 14 次下载
- 6.7一元一次不等式组和它的解法 课件PPT 课件 15 次下载
- 6.8-二元一次方程 课件PPT 课件 13 次下载
- 6.9二元一次方程组及其解法(1) 课件PPT 课件 15 次下载
2020-2021学年6.6 一元一次不等式的解法教课内容ppt课件
展开这是一份2020-2021学年6.6 一元一次不等式的解法教课内容ppt课件,共49页。PPT课件主要包含了复习回顾,易混易错点等内容,欢迎下载使用。
不等式的性质1 不等式的两边加(或减)同一个数(或式子),不等号的方向不变.
不等式的性质2 不等式的两边乘(或除以)同一个正数,不等号的方向不变.
不等式的性质 3 不等式的两边乘(或 除以)同一个负数,不等号的方向改变 注意: 必须把不等号的方向改变
1.去分母2.去括号3. 移项4. 合并同类项5. 系数化为1
二.解一元一次方程的基本步骤
(1)x的2倍加1等于x的5倍加10 ,求x.
(2)x的2倍加1不小于x的5倍加10 ,求x.
通过比较这两题的练习,你对这两类题目的解法有什么印象?
解一元一次方程与解一元一次不等式的方法、步骤类似.
解一元一次不等式和解一元一次方程类似,有 去分母 去括号 移项 合并同类项 系数化为1等步骤. 在去分母和系数化为1的两步中,要特别注意不等式的两边都乘以(或除以)一个负数时,不等号的方向必须改变.
不等式的方法、步骤都类似的结论,同桌一起完成以下两题,并将解题过程填入表(一)。
(1)利用解一元一次方程与解一元一次
不等式的一般步骤,并指出每个步骤的根据,完成表(二).
(2)再利用表(一)归纳解一元一次
写不等式的解时,要把表示未知数的字母写在不等号的左边。
解不等式:-2x+1>3-3x 解: -2x+1> 3 - 3x移项,得 -2x >3 合并同类项,得 >
1.解下列不等式:
(1) -5x ≤ 10 ;
(2)4x -3 < 10x + 7 .
例2 解不等式12-6x≥2(1-2x),并把它的解集在数轴上表示出来 :
原不等式的解集在数轴上的表示如下图所示.
解集x≤5中包含5,所以在数轴上将表示5的点画成实心圆点.
2.解下列不等式:
(1) 3x -1 > 2(2-5x) ;
(2) .
8x-4≥15x-608x-15x≥-60+4 -7x≥-56 x≤8
这个不等式的解集在数轴上的表示为
3、下列解不等式过程是否正确,如果不正确请给予改正。解:不等式 去分母得 6x-3x+2(x+1)<6-x+8去括号得 6x-3x+2x+2 <6-x+8移项得 6x-3x+2x-x<6+8+2合并同类项得 4x<16系数化为1,得 x<4
下列解不等式过程是否正确,如果不正确请给予改正。解:不等式 去分母得 6x-3x+2(x+1)<6-(x+8)去括号得 6x-3x+2x+2 <6-x+8移项得 6x-3x+2x-x<6+8+2合并同类项得 4x<16系数化为1,得 x<4
请指出上面的解题过程中,有什么地方产生了错误。 答:在第①步中_________________________,在第②步中________________,在第③步中 _____________,在第④步中_________。
两边同乘-6,不等号没有变号
去括号,得 3+3x≤2+4x+6
移项,得 3x-4x≤2+6-3
合并同类项,得 -x≤5
解:去分母,得3(1+x)≤2(1+2x)+6
两边同除以-1,得 x≥-5
这个不等式的解集表示在数轴上如图所示
∴不等式的最小负整数解为x=-5
先求不等式的解集,画数轴,在数轴上找出特殊解.
求适合不等式3(2+x)>2x的最小负整数
解:6+3x>2x 3x-2x>-6 x>-6
不等式解集在数轴上的表示.
例 、求不等式3(1-x) ≤2(x+9)的负整数解.
解:解不等式3(1-x) ≤2(x+9),得x≥-3
所以x=-3,-2,-1.
求不等式2 (x-1) <x+1的正整数解.
试一试: 能使不等式 成立的的最大整数值是__________。
不等式解集中最值问题:
对于不等式x≥a的解集有最小值,最小值为x=a;对于不等式x≤a的解集有最大值,最大值为x=a,而不等式x>a的解集没有最小值,x 1、求满足 的值不小于代数式 的值的x的最小整数值。
2、已知方程3x-ax=2 的解是不等式3(x+2)-7<5(x-1)-8的最小整数解,求代数式 的值.
1:已知关于 的不等式 ,并且 ,求不等式的解集。
2。如果(a+1)x<a+1的解集是x>1,则a3。如果(a-2)x>1的解集是x<
7、(1)若 的解集为 ,求a的取 值范围________。
(2)若不等式(a-2)x>a-2的解集为x<1,求a的取值范围( )。A a < -2 B a < 2 Ca >-2 D a >2
(3)已知不等式(m-1)x>3的解集为x< -1,求m的值。
例.关于x的不等式3x-2a≤-2的解集如图所示,求a的值.
A.0 B.—3 C.—2 D.—1
所示,则a 的取值是( )
∴ (a-1)/2=-1∴ a=-1
例.根据下列条件,分别求出a的值或取值范围:1)已知不等式 的解集是x<5;2)已知x=5是不等式 的解.
1).2x-4>3x+a2x-3x>a+4-x>(a+4)∴解集是:x<-a-4∵解集是x<5 ∴-a-4=5 得a=-9
2).据题意有: 即6>15+a ∴ -9>a 解得:a<-9
一次环保知识竞赛共有20道题,规定答对一道题得5分,不答得0分,答错一道题扣2分.在这次竞赛中,小明有一题没答,小明的分数超过80分,小明至多答错了几道题?
解 设小明答错了X道题,
由题意得: 5(20-1-X)-2X > 80
答: 小明至多答错了2道题.
不等式(组)在实际生活中的应用 1. 当应用题中出现以下的关键词,如大,小,多,少,不小于,不大于,至少,至多等,应属列不等式(组)来解决的问题,而不能列方程(组)来解. 2.步骤:(1)审题,找出不等关系;(2)设未知数,用未知数表示有关的数量;(3)列不等式(组)(4)解不等式(或不等式组) (5)答题,注意:答案要符合实际意义。
例题:某市自来水公司按如下标准收费:用户每月用水在5立方米之内的,按每立方米1.5元收费;超出5立方米的部分,每立方米收费2元。小明家某月的水费超过了15元,那么他家这个月的用水量至少是多少?(取整数)
解:设小明家这个月的用水量为x立方米。 1.5 ×5+2(x-5)>15解得:x >8.75因为x取整数所以x ≥ 9答:小明家这个月的用水量至少为9立方米。
:高速公路施工需要爆破,根据现场实际情况,操作人员点燃导火线后,要在炸药爆破前跑到400米外的安全区域,已知导火索燃烧速度是1.2厘米/秒,人跑步的速度是5米/秒,问导火索至少需要多长?
设导火索至少需要x厘米长,据题意有:解得:答:导火索至少需要96厘米长.
导火索燃烧的时间 人跑出400米外的时间.设导火索长为x厘米,则:
解:设参加合影的人数有x人。
0.6+0.4x≤0.5x 解得:x≥6 答:参加合影的至少有6人。
例 题 一组学生到校门口拍一张合影,乙知冲一张底片需要0.6元,洗一张照片需要0.4元,每人都要得到一张照片,每人分担的钱不能超过0.5元。那么参加合影的同学至少有几人?
去分母,得
这节课学了什么?
解一元一次不等式的步骤有哪些是需要我们注意的?
请注意与一元一次方程解法的异同!
用类比学习的方法得到了解一元一次不等式的方法
(1)去分母(2)去括号(3)移项(4)合并同类项(5)系数化为1
在(1)与(5)这两步若乘数(或除数)为负数,要把不等号方向改变
两边同时除以未知数的系数
⑴解一元一次方程的依据是什么? 解一元一次不等式的依据是什么? 两者有什么区别?
(不等式的左右两边同时乘以或除以同一个负数,
⑵解一元一次方程和一元一次不等式 的一般步骤?
(去分母、去括号、移项、合并同类项、化系数为1)
一元一次不等式的解集在数轴上表示
解一元一次不等式的常见错误
一、不注意符号 解不等式 - 7x + 5 > 6 - 6x移项,得7x - 6x > -6 - 5
二、忽略了分数线的括号作用 解不等式 去分母,得4x -1 -3x-4< 1 - x.
三、去括号时的错误 解不等式 5 (x +2) < - 4(2x – 1) 去括号,得5 x +2< - 8x – 4
四、概念不清 不等式 2x - 5 0≤0 的非负整数解 为1~25的正整数。
五、忽视对参数的讨论 解关于 x的不等式 ax≤ b (a≤ 0)得 x≤ b/a
例题: 某单位计划10月份组织员工到杭州旅游,人数估计 在10到25人之间,甲、乙两旅行社的服务质量相同且组织到杭州旅游的价格都是每人200元,该单位联系时,甲旅行社表示可以给予每位游客七五折优惠,乙旅行社表示可以免去一带队领导的旅游费用,其余游客八折优惠。问该单位怎样选择,可使支付的旅游总费用较少?
解:设该单位去x人,则:
支付甲旅行社0.75× 200x=150x 支付乙旅行社0.8 × 200(x-1)=160x-160 讨论: (1)当支付甲旅行社和乙旅行社费用相同时: 150x=160x-160 解得:x =16 (2)当支付甲旅行社大于乙旅行社费用时: 150x>160x-160 解得:x<16 (3)当支付甲旅行社小于乙旅行社费用时: 150x < 160x-160 解得:x>16
1、不等式的解与解集的概念的混淆 例、下列说法正确的是( ) A x=2是不等式x﹥-1的解集 B x=2是不等式x﹥-1的解 C x=-1是不等式x﹥-1的解 D x﹥-1的解集是x=-1
2.设x<-6,则|3-|x+3||的值是( ) (A)x (B)6-x (C)x-6 (D)-x-6
使不等式成立的未知数的值.
例:-2是不是不等式2x-1>-3的解?4呢?
解:当X=-2时,2x-1=2×(-2)-1=5<-3,即不等式左边<右边,所以x=-2不是不等式2x-1>-3.的解.当x=4时,2x-1=2×4-1=7>-3,即不等式左边>右边,所以x=4是不等式2x-1>-3的解.
一个含有未知数的不等式的所有解,组成了这个不等式的解集。
例:x<5是不等式3x-5<2x的解集,则下列说法正确的有( )个。
①5是不等式3x-5<2x的一个解;②0是不等式3x-5<2x的一个解;③x<4也是不等式3x-5<2x的解集;④所有小于4的数都是不等式3x-5<2x的解。
剖析:x<5是不等式3x-5<2x的解集,说明任何一个小于5的数都是不等式3x-5<2x的一个解,当然小于4的值也一定是不等式3x-5<2x的解,但x<4不是不等式的解集,因为它不是由不等式的所有解组成的。
A.1个; B.2个; C.3个; D.4个.
其实质就是把不等式化为“x>a或x≥a或x5、用数轴表示不等式的解集:
大于向右画,小于向左画.
1.关于x的不等式2x-a≤-1的解集如图所示,则a的取值是( )
A.0; B.-3; C.-2; D.-1
2.如图,表示的是不等式的解集,或中错误的是( )
用数轴表示不等式的一般步骤;(1)画数轴;(2)定界点;(3)定方向.
6、不等式解集中最值问题:
对于不等式x≥a的解集有最小值,最小值为x=a;对于不等式x≤a的解集有最大值,最大值为x=a,而不等式x>a的解集没有最小值,x例:x≥2时x的最小值是a,x≤5时x的最大值是b,试求ba的值。
解:根据已知条件,得a=2,b=5则ba=52=25
不等式的左右两边都是整式,只含有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。
8、一元一次不等式的解法:
解下列不等式并用数轴表示解集:
1、2(2x-3) <5(x-1) 2、10-3(x+6) ≤13、3(2x+5) >2(4x+3) 4、10-4(x-3) ≤2(x-1) 5、 6、7、 8、9、2(3x-1) -3(4x+5) >x-4(x-7) 10、3〔x-2(x-1)〕≤4x 11、
相关课件
这是一份苏科版九年级下册6.6 图形的位似完美版ppt课件,共44页。PPT课件主要包含了知4-讲,图形的位似等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)六年级下册6.6 一元一次不等式的解法一等奖课件ppt,文件包含66一元一次不等式的解法课件ppt、66一元一次不等式的解法教案docx等2份课件配套教学资源,其中PPT共49页, 欢迎下载使用。
这是一份初中数学青岛版九年级下册6.6简单的概率计算教课ppt课件,共14页。PPT课件主要包含了区域长度面积,⇔可能性大,⇔可能性小,聪明的你想一想等内容,欢迎下载使用。