高中数学:2.7《导数的实际应用1》教案(北师大版选修2-2)
展开第七课时 导数的实际应用(一)
一、教学目标:
1、知识与技能:⑴让学生掌握在实际生活中问题的求解方法;⑵会利用导数求解最值。
2、过程与方法:通过分析具体实例,经历由实际问题抽象为数学问题的过程。
3、情感、态度与价值观:让学生感悟由具体到抽象,由特殊到一般的思想方法
二、教学重点:函数建模过程
教学难点:函数建模过程
三、教学方法:探究归纳,讲练结合
四、教学过程
(一)、复习:利用导数求函数极值和最值的方法
(二)、探究新课
例1、在边长为60 cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少?
解法一:设箱底边长为xcm,则箱高cm,得箱子容积
.
令 =0,解得 x=0(舍去),x=40, 并求得 V(40)=16 000
由题意可知,当x过小(接近0)或过大(接近60)时,箱子容积很小,因此,16 000是最大值答:当x=40cm时,箱子容积最大,最大容积是16 000cm3
解法二:设箱高为xcm,则箱底长为(60-2x)cm,则得箱子容积
.(后面同解法一,略)
由题意可知,当x过小或过大时箱子容积很小,所以最大值出现在极值点处.事实上,可导函数、在各自的定义域中都只有一个极值点,从图象角度理解即只有一个波峰,是单峰的,因而这个极值点就是最值点,不必考虑端点的函数值
例2、圆柱形金属饮料罐的容积一定时,它的高与底与半径应怎样选取,才能使所用的材料最省?
解:设圆柱的高为h,底半径为R,则表面积
S=2πRh+2πR2
由V=πR2h,得,则
S(R)= 2πR+ 2πR2=+2πR2
令 +4πR=0
解得,R=,从而h====2
即h=2R因为S(R)只有一个极值,所以它是最小值答:当罐的高与底直径相等时,所用材料最省
变式:当圆柱形金属饮料罐的表面积为定值S时,它的高与底面半径应怎样选取,才能使所用材料最省? 提示:S=2+h=
V(R)=R=
)=0 .
例3、已知某商品生产成本C与产量q的函数关系式为C=100+4q,价格p与产量q的函数关系式为.求产量q为何值时,利润L最大?
分析:利润L等于收入R减去成本C,而收入R等于产量乘价格.由此可得出利润L与产量q的函数关系式,再用导数求最大利润.
解:收入,
利润
令,即,求得唯一的极值点答:产量为84时,利润L最大
(三)、小结:本节课学习了导数在解决实际问题中的应用.
(四)、课堂练习:第69页练习题 (五)、课后作业:第69页A组中1、3 B组题。
五、教后反思:
高中数学人教版新课标B选修2-21.3.3导数的实际应用教学设计: 这是一份高中数学人教版新课标B选修2-21.3.3导数的实际应用教学设计,共6页。教案主要包含了教学内容分析,学情分析,课堂设计思想,教学目标,教学重点与难点,教学方法,教学过程设计,板书设计等内容,欢迎下载使用。