年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    沪科初中数学七下《6.2实数》word教案 (6)

    沪科初中数学七下《6.2实数》word教案 (6)第1页
    还剩2页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学七年级下册6.2 实数教案

    展开

    这是一份数学七年级下册6.2 实数教案,共3页。教案主要包含了创设情境 导入新课,合作交流 解读探究,应用迁移 巩固提高等内容,欢迎下载使用。
    实数教学目标熟练掌握:无理数意义及大小估算,实数意义、分类及运算法则和运算率,大小比较.教学重难点重点掌握:实数点与数轴一一对应.教学过程一、创设情境  导入新课使用计算器计算,把下列有理数写成小数的形式,你有什么发现?     3 , 我们发现,上面的有理数都可以写成有限小数或者无限循环小数的形式,即:   二、合作交流  解读探究【归纳】 任何一个有理数都可以写成有限小数或无限循环小数的形式.反过来,任何有限小数或无限循环小数也都是有理数.【观察】通过前面的探讨和学习,我们知道,很多数的平方根和立方根都是无限不循环小数,无限不循环小数又叫无理数,也是无理数.【结论】 有理数和无理数统称为实数.【试一试】 把实数分类:    像有理数一样,无理数也有正负之分.例如是正无理数,是负无理数.由于非0有理数和无理数都有正负之分,所以实数也可以这样分类:    我们知道,每个有理数都可以用数轴上的点来表示.无理数是否也可以用数轴上的点来表示呢?【探究】直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O′,点O′的坐标是多少?OO′的长时这个圆的周长,点O′的坐标是,这样,无理数可以用数轴上的点表示出来.【结论】1、事实上,每一个无理数都可以用数轴上的一个点表示出来,这就是说,数轴上的点有些表示有理数,有些表示无理数当从有理数扩充到实数以后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数.2、与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大.【讨论】当数从有理数扩充到实数以后,有理数关于相反数和绝对值的意义同样适合于实数吗?【结论】的相反数是,这里表示任意一个实数.一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.三、应用迁移  巩固提高例1把下列各数分别填入相应的集合里:   正有理数{                   }    负有理数{                   }   正无理数{                   }    负无理数{                   }例2求下列各数的相反数和绝对值: 2.5,-,0,-3【问题1①利用数轴,我们怎样比较两个有理数的大小?在数轴上表示的数,右边的数总比左边的大.这个结论在实数范围内也成立.②我们还有什么方法可以比较两个实数的大小吗?两个正实数的绝对值较大的值也较大;两个负实数的绝对值大的值反而小;正数大于零,负数小于零,正数大于负数.【问题2比较下列各组数里两个数的大小:(1),1.4;(2)-,-;(3)-2,分析:像例1(1),即可以将,1.4的大小比较转化为的大小比较;也可以先求出的近似值,再通过比较它们近似值(取近似值时,注意精确度要相同)的大小,从而比较它们的大小.【问题3在数从有理数扩充到实数后,我们已经学过加、减、乘、除、乘方和开方运算.以下规定:除法运算中除数不为0,而且只有正数及0可以进行开平方运算,任何一个实数都可以进行开立方运算.有理数满足的算律加法交换律:a+bb+a加法结合律:(a+b)+ca+(b+c乘法交换律:abba乘法结合律:(abcabc分配律:ab+c)=ab+ac我们如何知道运算律在实数范围内是否适用?【例3】计算下列各式的值:(1)    (2)           (3)             (4)      (5)+2)      (6)+实数范围内的运算方法及运算顺序与在有理数范围内都是一样的.【例4】利用计算器计算(结果保留小数点后两位)(1)     (2)在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算.

    相关教案

    沪科版七年级下册6.2 实数教案:

    这是一份沪科版七年级下册6.2 实数教案,共2页。教案主要包含了复习内容,专题复习等内容,欢迎下载使用。

    初中数学沪科版七年级下册第6章 实数6.2 实数教学设计:

    这是一份初中数学沪科版七年级下册第6章 实数6.2 实数教学设计,共2页。教案主要包含了学前准备,探究活动,自我测试,应用与拓展,教学反思等内容,欢迎下载使用。

    初中数学沪科版七年级下册第6章 实数6.2 实数教案:

    这是一份初中数学沪科版七年级下册第6章 实数6.2 实数教案,共2页。教案主要包含了复习引入无理数,实数及其分类等内容,欢迎下载使用。

    • 精品推荐
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map