湘教版七年级下册5.1.2轴对称变换教学设计
展开轴对称变换
教学目标
1、了解轴对称变换的概念。
2、理解轴对称变换的性质:轴对称变换不改变原图形的形状和大小。
3、会按要求作出简单平面图形经过一次或两次轴对变换后的图形。
4、探索简单图形之间的轴对称关系。
5、了解并欣赏物体的镜面对称。
教学重点、难点
1、重点是轴对称变换的概念和作法。
2、难点是课本“合作学习”所要求解决的问题需要从立体图形转化到平面图形。
教学准备
1、复习上节学习的轴对称图形以及它的基本性质。
2、学生工具准备:一面小镜子。
教学过程
一、观察、回答、体会下列问题
请问上面(图2-1)是轴对称图形吗?它的对称轴在哪里?
2. 现在我们把他沿着对称轴剪开,这样我们把轴对称图形位于对称轴两侧的两个部分看成两个图形了。这里我们可以说“这两个图形成轴对称”。
3. 再观察图2-2中直线a 两边的两个图形,他们就关于直线a 成轴对称。
4. 针对图2-2:由左边的“喜”变为右边的“喜”并且这两个“喜”字关于直线a 成轴对称,这样的图形改变叫做图形的“轴对称变换”。也叫“反射变换”。(简称反射)
经变换所得的新图形叫做原图形的像。
5. 反思:轴对称图形与轴对称变换有什么关系?(注意:要从两者涉及的图形个数、后者中对两个图形统一为一个图形来看等几方面说明)
6. 交流归纳:一个图形经轴对称变换后,图形上的某点与在“像”上的对应点的连线被对称轴垂直平分。
一、动手实践
1.例:如图,已知⊿ABC和直线m。以直线m 为对称轴,作⊿ABC经轴对称变换后所得的像。
分析:(1)作图形“像”的过程其实是找到关键点,然后作出关键点的“像”的过程。
(2)操作的依据是“对称轴垂直平分连结两个对称点之间的线段”。
作法:略。
反思:在图2-4中如果把图形沿直线m 折叠,由作法可知:两个三角形会重合吗?如果重合,这说明什么?
师生交流归纳:
(1)轴对称变换不改变原图形的形状和大小。
(2)经轴对称变换所得的图形和原图形全等。
2. 练一练:课本P42“做一做”。
三、合作学习
1. 如图2-5左边是刻在印章上的“马”,右边是印在纸上的“马”,如果把它们并排放在一起,两者关于怎样的一条直线成轴对称?
图2-5
2. 请你在纸上写上数字“23”,把它放在你的小镜子前,在镜子中你看到了什么?
交流归纳:实际图形与它在镜子里的像也可以想象成图2-5那样成轴对称关系。
四、总结提高,课堂练习
1. 什么是“轴对称变换”?
2. 怎样作一个图形经轴对称变换后所得的像?
3. “轴对称变换”的性质是什么?
4. 理解并体验镜面对称
湘教版七年级下册5.1.2轴对称变换教案及反思: 这是一份湘教版七年级下册<a href="/sx/tb_c95292_t8/?tag_id=27" target="_blank">5.1.2轴对称变换教案及反思</a>,共5页。教案主要包含了情景导入,教学新知,教学例题,课堂练习,作业布置等内容,欢迎下载使用。
2020-2021学年4.2 平移教学设计: 这是一份2020-2021学年4.2 平移教学设计,共5页。教案主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
初中数学湘教版七年级下册6.1.3众数教学设计及反思: 这是一份初中数学湘教版七年级下册6.1.3众数教学设计及反思,共3页。教案主要包含了创设情境,导入新课,课堂小结,拓展提高等内容,欢迎下载使用。