所属成套资源:浙教版数学八年级下册同步备课课件PPT
浙教版第二章 一元二次方程2.2 一元二次方程的解法教学课件ppt
展开这是一份浙教版第二章 一元二次方程2.2 一元二次方程的解法教学课件ppt,共18页。PPT课件主要包含了学习目标,复习回顾,用配方法解下列方程,典例解析,k-22+3,针对练习,达标检测,※配方法的应用,小结梳理等内容,欢迎下载使用。
理解并掌握把一个二次三项式通过配方化成a(x+h)2+k的形式.
灵活运用配方法求代数式的最值.
一般地,如果一个一元二次方程通过配方转化成 (x+n)2=m.
①当m>0时,则 ,方程的两个根为②当m=0时,则(x+n)2=0,x+n=0,开平方得方程的两个根为 x1=x2=-n.③当m<0时,则方程(x+n)2=m无实数根.
(2)x2 – 2x = 3
例 已知4x2+8(n+1)x+16n是一个关于x的完全平方式,求常数n的值.
例 试用配方法说明:不论k取何实数,多项式k2-4k+7 的值必定大于零.
解:k2-4k+7=k2-4k+4-4+7
因为(k-2)2≥0,
所以k2-4k+7的值必定大于零.
所以(k-2)2+3≥3.
利用配方法证明:不论x取何值,代数式-x2-x-1的值总是负数,并求出它的最大值.
解:-x2-x-1= -(x2+x+1) =-(x2+x+ - +1)
所以-x2-x-1的值必定小于零.
当 时,-x2-x-1有最大值
应用配方法求最值.(1) 2x2 - 4x+5的最小值; (2) -3x2 + 5x +1的最大值.
解:对原式配方,得
由非负性可知
所以,△ABC为直角三角形.
若 ,求(xy)z 的值.
由代数式的性质可知
1.不论x、y为什么实数,代数式x2+y2+2x-4y+7的值( )A.总不小于2B.总不小于7C.可为任何实数D.可能为负数
2.代数式2x2-7x+2的最小值为______.
3.用配方法证明 的值恒小于0.
4.阅读下面的材料并解答后面的问题:小力:能求出x2+4x+3的最小值吗?如果能,其最小值是多少?小强:能.求解过程如下:因为x2+4x+3=x2+4x+4-4+3=(x2+4x+4)+(-4+3)=(x+2)2-1,而(x+2)2≥0,所以x2+4x+3的最小值是-1.问题:(1)小强的求解过程正确吗?(2)你能否求出x2-8x+5的最小值?如果能,写出你的求解过程.
解:(1)正确(2)能.过程如下:x2-8x+5=x2-8x+16-16+5=(x-4)2-11,∵(x-4)2≥0,所以x2-8x+5的最小值是-11.
5.已知实数a、b满足a2+4ab+4b2+a+2b-6=0,求a+2b的值.
解:a2+4ab+4b2+a+2b-6=0(a+2b)2+(a+2b)-6=0(a+2b+3)(a+2b-2)=0∴a+2b+3=0,a+2b-2=0即:a+2b=-3或2.
6.已知a,b,c为△ABC的三边长,且 试判断△ABC的形状.
所以,△ABC为等边三角形.
1.求最值或证明代数式的值为恒正(或负)
对于一个关于x的二次多项式通过配方成a(x+m)2+n的形式后,(x+m)2≥0,n为常数,当a>0时,可知其最小值;当a<0时,可知其最大值.
2.完全平方式中的配方
如:已知x2-2mx+16是一个完全平方式,所以一次项系数一半的平方等于16,即m2=16,m=±4.
3.利用配方构成非负数和的形式
对于含有多个未知数的二次式的等式,求未知数的值,解题突破口往往是配方成多个完全平方式得其和为0,再根据非负数的和为0,各项均为0,从而求解.如:a2+b2-4b+4=0,则a2+(b-2)2=0,即a=0,b=2.
相关课件
这是一份初中数学浙教版八年级下册2.2 一元二次方程的解法课前预习ppt课件,共19页。PPT课件主要包含了课时导入,知识点1配方,例题1,练习1,例题2,例题3,例题4,练习2等内容,欢迎下载使用。
这是一份初中数学浙教版八年级下册2.2 一元二次方程的解法说课课件ppt,共19页。PPT课件主要包含了课时导入,知识点1配方,例题1,练习1,例题2,例题3,例题4,练习2等内容,欢迎下载使用。
这是一份2021学年6.3 反比例函数的应用教学ppt课件,共26页。PPT课件主要包含了学习目标,∴能摆出矩形,∴不能摆出正方形,问题引入,典例解析,∴图形在第一象限,建立数学模型的过程,总结提升,针对练习,∴xy12等内容,欢迎下载使用。