![初中数学2018中考一模函数探究类题型 专项练习卷第1页](http://m.enxinlong.com/img-preview/2/3/12368254/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![初中数学2018中考一模函数探究类题型 专项练习卷第2页](http://m.enxinlong.com/img-preview/2/3/12368254/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![初中数学2018中考一模函数探究类题型 专项练习卷第3页](http://m.enxinlong.com/img-preview/2/3/12368254/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学2018中考一模函数探究类题型 专项练习卷
展开
这是一份初中数学2018中考一模函数探究类题型 专项练习卷,共15页。
2018西城一模
25.如图,为⊙的直径上的一个动点,点在上,连接,过点作的垂线交⊙于点.已知,.设、两点间的距离为,、两点间的距离为.
某同学根据学习函数的经验,对函数随自变量的变化而变化的规律进行探究.
下面是该同学的探究过程,请补充完整:
(1)通过取点、画图、测量及分析,得到了与的几组值,如下表:
(说明:补全表格对的相关数值保留一位小数)
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.
(3)结合画出的函数图象,解决问题:当时,的长度均为__________.
2018石景山一模
25.如图,半圆的直径,点在上且,点是半圆上的
动点,过点作交(或的延长线)于点.设,.(当点与点或点重合时,的值为)
小石根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究.
下面是小石的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了与的几组值,如下表:
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数
的图象;
(3)结合画出的函数图象,解决问题:
当与直径所夹的锐角为时,的长度约为 .
2018平谷一模
25.如图,在△ABC中,∠C=60°,BC=3厘米,AC=4厘米,点P从点B出发,沿B→C→A以每秒1厘米的速度匀速运动到点A.设点P的运动时间为x秒,B、P两点间的距离为y厘米.
小新根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究.
下面是小新的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了x与y的几组值,如下表:
经测量m的值是 (保留一位小数).
(2)建立平面直角坐标系,描出表格中所有各对对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:在曲线部分的最低点时,在△ABC中画出点P所在的位置.
2018怀柔一模
25.如图,在等边△ABC中, BC=5cm,点D是线段BC上的一动点,连接AD,过点D作DE⊥AD,垂足为D,交射线AC与点E.设BD为x cm,CE为y cm.
小聪根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
下面是小聪的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了与的几组值,如下表:
(说明:补全表格上相关数值保留一位小数)
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:当线段BD是线段CE长的2倍时,BD的长度约为________.
2018海淀一模
25.在研究反比例函数的图象与性质时,我们对函数解析式进行了深入分析.
首先,确定自变量的取值范围是全体非零实数,因此函数图象会被轴分成两部分;其次,分析解析式,得到随的变化趋势:当时,随着值的增大,的值减小,且逐渐接近于零,随着值的减小,的值会越来越大,由此,可以大致画出在时的部分图象,如图1所示:
利用同样的方法,我们可以研究函数的图象与性质. 通过分析解析式画出部分函数图象如图2所示.
(1)请沿此思路在图2中完善函数图象的草图并标出此函数图象上横坐标为0的点;(画出网格区域内的部分即可)
(2)观察图象,写出该函数的一条性质:____________________;
(3)若关于的方程有两个不相等的实数根,结合图象,直接写出实数的取值范围:___________________________.
2018朝阳一模
25.如图,AB是⊙O的直径,AB=4cm,C为AB上一动点,过点C的直线交⊙O于D、E两点,且∠ACD=60°,DF⊥AB于点F,EG⊥AB于点G,当点C在AB上运动时,设AF=cm,DE=cm(当的值为0或3时,的值为2),探究函数y随自变量x的变化而变化的
规律.
(1)通过取点、画图、测量,得到了x与y的几组对应值,如下表:
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的
图象;
(3)结合画出的函数图象,解决问题:点F与点O重合时,DE长度约为 cm(结果保留一位小数).
2018东城一模
25. 如图,在等腰△ABC中,AB=AC,点D,E分别为BC,AB的中点,连接AD.在线段AD
上任取一点P,连接PB ,PE.若BC =4,AD=6,设PD=x(当点P与点D重合时,x的值为0),PB+PE=y.
小明根据学习函数的经验,对函数y随自变量x的变换而变化的规律进行了探究.
下面是小明的探究过程,请补充完整:
(1)通过取点、画图、计算,得到了x与y的几组值,如下表:
(说明:补全表格时,相关数值保留一位小数).
(参考数据: ,,)
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)函数y的最小值为______________(保留一位小数),此时点P在图1中的位置为 ________________________.
2018丰台一模
25.如图,Rt△ABC中,∠ACB = 90°,点D为AB边上的动点(点D不与点A,点B重合),过点D作ED⊥CD交直线AC于点E.已知∠A = 30°,AB = 4cm,在点D由点A到点B运动的过程中,设AD = xcm,AE = ycm.
小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
下面是小东的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了x与y的几组值,如下表:
(说明:补全表格时相关数值保留一位小数)
(2)在下面的平面直角坐标系中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:当AE =AD时,AD的长度约为 cm.
2018房山一模
25. 如图,Rt△ABC,∠C=90°,CA=CB=4eq \r(2)cm,点P为AB边上的一个动点,点E是CA边的中点, 连接PE,设A,P两点间的距离为xcm,P,E两点间的距离为y cm.
小安根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究.
下面是小安的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了与的几组值,如下表:
(说明:补全表格时相关数值保留一位小数)
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:
①写出该函数的一条性质: ;
②当时,的长度约为 cm.
2018门头沟一模
25.在正方形ABCD中, AC为对角线,AC上有一动点P,M是AB边的中点,连接PM、PB, 设、两点间的距离为,长度为.
小东根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究.
下面是小东的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了与的几组值,如下表:
(说明:补全表格时相关数值保留一位小数)
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.
(3)结合画出的函数图象,解决问题:的长度最小值约为__________.
2018大兴一模
25.如图,在△ABC中,AB=4.41cm,BC=8.83cm,P是BC上一动点,连接AP,设P,C两点间的距离为cm,P,A两点间的距离为cm.(当点P与点C重合时,的值为0)小东根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究.
下面是小东的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了与的几组值,如下表:
(说明:补全表格时相关数值保留一位小数)
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:当PA=PC时,PC的长度约为 cm.(结果保留一位小数)
2018顺义一模
25.如图,P是半圆弧上一动点,连接PA、PB,过圆心O作OC∥BP交PA于点C,连接CB.已知AB=6cm,设O,C两点间的距离为x cm,B,C两点间的距离为y cm.
小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究.
下面是小东的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了x与y的几组值,如下表:
(说明:补全表格时相关数据保留一位小数)
(2)建立直角坐标系,描出以补全后的表中各对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:直接写出△OBC周长C的取值范围是 .
2018通州一模
25. 如图1,⊙的半径为,为⊙直径,点为半圆上一动点,点为弧的中点.连接,过点作,垂足为点.如果,求线段的长.
图1
小何根据学习函数的经验,将此问题转化为函数问题解决.小何假设的长度为,线段的长度为.(当点与点重合时,长度为0),对函数随自变量的变化而变化的规律进行探究.
下面是小何的探究过程,请补充完整:(说明:相关数据保留一位小数)
(1)通过取点、画图、测量,得到了与的几组值,如下表:
当时,点的位置如图2所示.请你在图2中帮助小何完成作图,并使用刻度尺度量出线段的长度,填写在表格空白处.
图2
(2)建立直角坐标系,描出以补全后的表中各组对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象解决问题: 当时,的长度约为_________ cm.
2018燕山一模
26.已知y是x的函数,自变量x的取值范围是x≠0的全体实数,下表是y与x的几组对应值.
小华根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.
下面是小华的探究过程,请补充完整:
(1)从表格中读出,当自变量是-2时,函数值是 ;
(2)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;
(3)在画出的函数图象上标出x=2时所对应的点,并写出m=
(4)结合函数的图象,写出该函数的一条性质: .
1
1.5
2
2.5
3
3.5
4
0
3.7
3.8
3.3
2.5
x(s)
0
1
2
3
4
5
6
7
y(cm)
0
1.0
2.0
3.0
2.7
2.7
m
3.6
x/cm
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
y/cm
5.0
3.3
2.0
0.4
0
0.3
0.4
0.3
0.2
0
x/cm
0
0.40
0.55
1.00
1.80
2.29
2.61
3
y/cm
2
3. 68
3.84
3.65
3.13
2.70
2
x
0
1
2
3
4
5
6
y
5.2
4.2
4.6
5.9
7.6
9.5
x/cm
…
1
2
3
…
y/cm
…
0.4
0.8
1.0
1.0
0
4.0
…
x/cm
0
1
2
3
4
5
6
7
8
y/cm
2.8
2.2
2.0
2.2
2.8
3.6
5.4
6.3
6.0
7.4
x/cm
0
0.43
1.00
1.50
1.85
2.50
3.60
4.00
4.30
5.00
5.50
6.00
6.62
7.50
8.00
8.83
y/cm
7.65
7.28
6.80
6.39
6.11
5.62
4.87
4.47
4.15
3.99
3.87
3.82
3.92
4.06
4.41
x/cm
0
0.5
1
1.5
2
2.5
3
y/cm
3
3.1
3.5
4.0
5.3
6
x/cm
0
1
2
3
4
5
6
7
8
y/cm
0
1.6
2.5
3.3
4.0
4.7
5.8
5.7
x
…
-3
-2
-1
-eq \f(1,2)
-eq \f(1,3)
eq \f(1,3)
eq \f(1,2)
1
2
3
…
y
…
eq \f(25,6)
eq \f(3,2)
-eq \f(1,2)
-eq \f(15,8)
-eq \f(53,18)
eq \f(55,18)
eq \f(17,8)
eq \f(3,2)
m
…
相关试卷
这是一份初中数学中考复习 题型09 几何类比、拓展、探究题(原卷版),共33页。试卷主要包含了解答题等内容,欢迎下载使用。
这是一份初中数学中考复习 题型02 规律探索类试题(原卷版),共10页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份初中数学中考复习 题型01 操作类试题(原卷版),共12页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。