还剩21页未读,
继续阅读
所属成套资源:2021年人教版数学九年级上册名校期末复习卷(含答案)
成套系列资料,整套一键下载
2019-2020学年河南省商丘市梁园区九年级(上)期末数学试卷
展开这是一份2019-2020学年河南省商丘市梁园区九年级(上)期末数学试卷,共24页。
A.任意画一个三角形,其内角和是360°
B.任意抛一枚图钉,钉尖着地
C.通常加热到100℃时,水沸腾
D.太阳从东方升起
2.(3分)若函数是反比例函数,且它的图象在第一、三象限,则m的值为( )
A.2B.﹣2C.D.
3.(3分)如图,AB∥CD,AB=6,CD=9,AD=10,则OD的长为( )
A.4B.5C.6D.7
4.(3分)若正方形的边长为6,则其外接圆的半径为( )
A.3B.3C.6D.6
5.(3分)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是( )
A.55°B.60°C.65°D.70°
6.(3分)如图,BC是⊙O的直径,A是⊙O上的一点,∠OAC=32°,则∠B的度数是( )
A.58°B.60°C.64°D.68°
7.(3分)若点A(x1,﹣6),B(x2,﹣2),C(x3,2)在反比例函数y=的图象上,则x1,x2,x3的大小关系是( )
A.x1<x2<x3B.x2<x1<x3C.x2<x3<x1D.x3<x2<x1
8.(3分)组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为( )
A.x(x+1)=28B.x(x﹣1)=28
C.x(x﹣1)=28D.x(x﹣1)=28
9.(3分)如图,△ABC与△DEF是位似图形,位似比为2:3,已知DF=4,则AC的长为( )
A.B.C.D.
10.(3分)已知直线y=n与二次函数y=(x﹣2)2﹣1的图象交于点B,点C,二次函数图象的顶点为A,当△ABC是等腰直角三角形时,则n的值为( )
A.1B.C.2﹣D.2+
二.填空题(每小题3分,共15分)
11.(3分)不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是 .
12.(3分)把二次函数y=x2﹣4x+3的图象沿y轴向下平移1个单位长度,再沿x轴向左平移3个单位长度后,此时抛物线相应的函数表达式是 .
13.(3分)如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是 .
14.(3分)如图,在扇形OAB中,∠AOB=90°,点C为OB的中点,CD⊥OB交弧AB于点D.若OA=2,则阴影部分的面积为 .
15.(3分)矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为 .
三.解答题(共8题,共75分)
16.(8分)一定质量的氧气,它的密度ρ(kg/m3)是它的体积V(m3)的反比例函数,当V=10m3时,ρ=1.43kg/m3.(1)求ρ与V的函数关系式;(2)求当V=2m3时求氧气的密度ρ.
17.(9分)一个盒中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸取一个小球然后放回,再随机摸出一个小球.
(Ⅰ)请用列表法(或画树状图法)列出所有可能的结果;
(Ⅱ)求两次取出的小球标号相同的概率;
(Ⅲ)求两次取出的小球标号的和大于6的概率.
18.(9分)已知关于x的方程x2﹣(m+1)x+2(m﹣1)=0
(1)求证:无论m取何值时,方程总有实数根;
(2)若等腰三角形一边长为4,另两边恰好是此方程的根,求此三角形的另两边长.
19.(9分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,
(Ⅰ)求证:△AFE∽△CFD;
(Ⅱ)若AB=4,AD=3,求CF的长.
20.(9分)如图,AB为⊙O的直径,C、F为⊙O上两点,且点C为弧BF的中点,过点C作AF的垂线,交AF的延长线于点E,交AB的延长线于点D.
(1)求证:DE是⊙O的切线;
(2)若AE=3,DE=4,求⊙O的半径的长.
21.(10分)如图,一次函数y=x+4的图象与反比例函数y=(k为常数且k≠0)的图象交于A(﹣1,a),B两点,与x轴交于点C.
(1)求此反比例函数的表达式;
(2)若点P在x轴上,且S△ACP=S△BOC,求点P的坐标.
22.(10分)数学兴趣小组活动中,小明进行数学探究活动,将边长为的正方形ABCD与边长为的正方形AEFG按图1位置放置,AD与AE在同一条直线上,AB与AG在同一条直线上.
(1)小明发现DG⊥BE,请你帮他说明理由.
(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.
23.(11分)如图,在平面直角坐标系中,直线y=﹣x+3与x轴,y轴分别交于点A,点B,抛物线y=ax2+bx+c(a≠0)经过A,B与点C(﹣1,0).
(1)求抛物线的解析式;
(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为D,交线段AB于点E.设点P的横坐标为m.
①求△PAB的面积y关于m的函数关系式,当m为何值时,y有最大值,最大值是多少?
②若点E是垂线段PD的三等分点,求点P的坐标.
2019-2020学年河南省商丘市梁园区九年级(上)期末数学试卷
参考答案与试题解析
一.选择题(每小题3分,共30分)
1.(3分)下列事件中,是随机事件的是( )
A.任意画一个三角形,其内角和是360°
B.任意抛一枚图钉,钉尖着地
C.通常加热到100℃时,水沸腾
D.太阳从东方升起
【分析】根据随机事件、必然事件以及不可能事件的定义即可作出判断.
【解答】解:A、任意画一个三角形,其内角和是360°是不可能事件,故本选项错误;
B、任意抛一枚图钉,钉尖着地是随机事件,故本选项正确;
C、通常加热到100℃时,水沸腾是必然事件,故本选项错误;
D、太阳从东方升起是必然事件,故本选项错误;
故选:B.
【点评】此题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
2.(3分)若函数是反比例函数,且它的图象在第一、三象限,则m的值为( )
A.2B.﹣2C.D.
【分析】根据反比例函数的定义列式求出m,根据反比例函数的性质得到m>0,得到答案.
【解答】解:∵函数y=mx是反比例函数,
∴m2﹣5=﹣1,
解得,m=±2,
∵它的图象在第一、三象限,
∴m>0,
∴m=2,
故选:A.
【点评】本题考查的是反比例函数的定义和性质,形如y=(k为常数,k≠0)的函数称为反比例函数.
3.(3分)如图,AB∥CD,AB=6,CD=9,AD=10,则OD的长为( )
A.4B.5C.6D.7
【分析】根据相似三角形的判定和性质列比例式即可得到结论.
【解答】解:∵AB∥CD,
∴△AOB∽△DOC,
∴=,
∵AB=6,CD=9,AD=10,
∴=,
∴OD=6,
故选:C.
【点评】本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.
4.(3分)若正方形的边长为6,则其外接圆的半径为( )
A.3B.3C.6D.6
【分析】作OE⊥AD于E,连接OD,在Rt△ADE中,根据垂径定理和勾股定理即可求解.
【解答】解:作OE⊥AD于E,连接OD,则AE=DE=3,OE=3.
在Rt△ADE中,OD==3.
故选:B.
【点评】此题主要考查了正多边形和圆,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.
5.(3分)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是( )
A.55°B.60°C.65°D.70°
【分析】根据旋转的性质和三角形内角和解答即可.
【解答】解:∵将△ABC绕点C顺时针旋转90°得到△EDC.
∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,
∴∠CAD=45°,∠ACD=90°﹣20°=70°,
∴∠ADC=180°﹣45°﹣70°=65°,
故选:C.
【点评】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.
6.(3分)如图,BC是⊙O的直径,A是⊙O上的一点,∠OAC=32°,则∠B的度数是( )
A.58°B.60°C.64°D.68°
【分析】根据半径相等,得出OC=OA,进而得出∠C=32°,利用直径和圆周角定理解答即可.
【解答】解:∵OA=OC,
∴∠C=∠OAC=32°,
∵BC是直径,
∴∠B=90°﹣32°=58°,
故选:A.
【点评】此题考查了圆周角的性质与等腰三角形的性质.此题比较简单,解题的关键是注意数形结合思想的应用.
7.(3分)若点A(x1,﹣6),B(x2,﹣2),C(x3,2)在反比例函数y=的图象上,则x1,x2,x3的大小关系是( )
A.x1<x2<x3B.x2<x1<x3C.x2<x3<x1D.x3<x2<x1
【分析】根据反比例函数图象上点的坐标特征,将A、B、C三点的坐标代入反比例函数的解析式y=,分别求得x1,x2,x3的值,然后再来比较它们的大小.
【解答】解:∵点A(x1,﹣6),B(x2,﹣2),C(x3,2)在反比例函数y=的图象上,
∴x1=﹣2,x2=﹣6,x3=6;
又∵﹣6<﹣2<6,
∴x2<x1<x3;
故选:B.
【点评】本题考查了反比例函数图象上点的坐标特征.经过反比例函数y=的某点一定在该函数的图象上.
8.(3分)组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为( )
A.x(x+1)=28B.x(x﹣1)=28
C.x(x﹣1)=28D.x(x﹣1)=28
【分析】关系式为:球队总数×每支球队需赛的场数÷2=4×7,把相关数值代入即可.
【解答】解:每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,
所以可列方程为:x(x﹣1)=4×7.
故选:B.
【点评】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.
9.(3分)如图,△ABC与△DEF是位似图形,位似比为2:3,已知DF=4,则AC的长为( )
A.B.C.D.
【分析】位似图形就是特殊的相似图形位似比等于相似比.利用相似三角形的性质即可求解.
【解答】解:∵△ABC与△DEF是位似图形,位似比为2:3,
∴AC:DF=2:3,
∴AC:4=2:3,
则AC=.
故选:C.
【点评】本题主要考查位似的定义.解题的关键是掌握位似图形是相似图形的特殊形式,位似比等于相似比的特点.
10.(3分)已知直线y=n与二次函数y=(x﹣2)2﹣1的图象交于点B,点C,二次函数图象的顶点为A,当△ABC是等腰直角三角形时,则n的值为( )
A.1B.C.2﹣D.2+
【分析】设B(x1,n)、C(x2,n).因为△ABC是等腰直角三角形,作AD⊥BC,所以AD=BC,即BC=2AD,AD=n﹣(﹣1)=n+1,即:BC=|x1﹣x2|===,所以=2(n+1),容易求出n=1.
【解答】解:设B(x1,n)、C(x2,n),作AD⊥BC,垂足为D连接AB,AC,
∵y=(x﹣2)2﹣1,
∴顶点A(2,﹣1),
AD=n﹣(﹣1)=n+1
∵直线y=n与二次函数y=(x﹣2)2﹣1的图象交于点B、C,
∴(x﹣2)2﹣1=n,
化简,得x2﹣4x+2﹣2n=0
x1+x2=4,x1x2=2﹣2n
∴BC=|x1﹣x2|===
∵点B、C关于对称轴直线AD对称,
∴D为线段BC的中点,
∵△ABC是等腰直角三角形,
∴AD=BC
即BC=2AD
=2(n+1),
∴(2+2n)=(n+1)2,
化简,得n2=1,
∴n=1或﹣1,
n=﹣1时直线y=n经过点A,不符合题意舍去,
所以n=1.
故选:A.
【点评】本题考查了二次函数图象的性质以及根与系数的关系,正确理解二次函数的图象性质和根与系数的关系是解题的关键.
二.填空题(每小题3分,共15分)
11.(3分)不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是 .
【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
【解答】解:∵共6个球,有5个红球,
∴从袋子中随机摸出一个球,它是红球的概率为.
故答案为:.
【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
12.(3分)把二次函数y=x2﹣4x+3的图象沿y轴向下平移1个单位长度,再沿x轴向左平移3个单位长度后,此时抛物线相应的函数表达式是 y=(x+1)2﹣2 .
【分析】首先将原式转化为顶点式,进而利用二次函数平移规律进而求出即可.
【解答】解:∵y=x2﹣4x+3=(x﹣2)2﹣1,
∴抛物线y=x2﹣4x+3沿y轴向下平移1个单位长度,再沿x轴向左平移3个单位长度后,得到抛物线解析是:y=(x﹣2+3)2﹣1﹣1=(x+1)2﹣2.
故答案为:y=(x+1)2﹣2.
【点评】本题主要考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.
13.(3分)如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是 A′(5,2) .
【分析】由线段AB绕点O顺时针旋转90°得到线段A′B′可以得出△ABO≌△A′B′O′,∠AOA′=90°,作AC⊥y轴于C,A′C′⊥x轴于C′,就可以得出△ACO≌△A′C′O,就可以得出AC=A′C′,CO=C′O,由A的坐标就可以求出结论.
【解答】解:∵线段AB绕点O顺时针旋转90°得到线段A′B′,
∴△ABO≌△A′B′O′,∠AOA′=90°,
∴AO=A′O.
作AC⊥y轴于C,A′C′⊥x轴于C′,
∴∠ACO=∠A′C′O=90°.
∵∠COC′=90°,
∴∠AOA′﹣∠COA′=∠COC′﹣∠COA′,
∴∠AOC=∠A′OC′.
在△ACO和△A′C′O中,
,
∴△ACO≌△A′C′O(AAS),
∴AC=A′C′,CO=C′O.
∵A(﹣2,5),
∴AC=2,CO=5,
∴A′C′=2,OC′=5,
∴A′(5,2).
故答案为:A′(5,2).
【点评】本题考查了旋转的性质的运用,全等三角形的判定及性质的运用,等式的性质的运用,点的坐标的运用,解答时证明三角形全等是关键.
14.(3分)如图,在扇形OAB中,∠AOB=90°,点C为OB的中点,CD⊥OB交弧AB于点D.若OA=2,则阴影部分的面积为 π﹣ .
【分析】连接DO,则OD=OA=OB=2.先由CD∥OA,∠AOB=90°,得出∠OCD=180°﹣∠AOB=90°,然后在Rt△COD中求出cs∠COD=,得到∠COD=60°,再根据扇形面积公式计算、三角形面积公式即可.
【解答】解:连接DO,则OD=OA=OB=2.
∵CD∥OA,∠AOB=90°,
∴∠OCD=180°﹣∠AOB=90°,
∵C为OB的中点,
∴CO=OB=DO,
∴cs∠COD==,
∴∠COD=60°,
则CD==,
∴阴影部分的面积=﹣×1×=π﹣,
故答案为:π﹣.
【点评】本题考查了扇形面积的计算,平行线的性质,解直角三角形,利用三角函数定义及特殊角的三角函数值求出∠COD=60°是解题的关键
15.(3分)矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为 或3 .
【分析】根据勾股定理求出BD,分PD=DA、P′D=P′A两种情况,根据相似三角形的性质计算.
【解答】解:∵四边形ABCD为矩形,
∴∠BAD=90°,
∴BD==10,
当PD=DA=8时,BP=BD﹣PD=2,
∵△PBE∽△DBC,
∴=,即=,
解得,PE=,
当P′D=P′A时,点P′为BD的中点,
∴P′E′=CD=3,
故答案为:或3.
【点评】本题考查的是相似三角形的性质、勾股定理和矩形的性质,掌握相似三角形的性质定理、灵活运用分情况讨论思想是解题的关键.
三.解答题(共8题,共75分)
16.(8分)一定质量的氧气,它的密度ρ(kg/m3)是它的体积V(m3)的反比例函数,当V=10m3时,ρ=1.43kg/m3.(1)求ρ与V的函数关系式;(2)求当V=2m3时求氧气的密度ρ.
【分析】首先根据题意,一定质量的氧气,它的密度ρ(kg/m3)是它的体积V(m3)的反比例函数,将数据代入用待定系数法可得反比例函数的关系式;进一步求解可得答案.
【解答】解:(1)设ρ=,当V=10m3时,ρ=1.43kg/m3,
所以1.43=,即k=14.3,
所以ρ与V的函数关系式是ρ=;
(2)当V=2m3时,把V=2代入得:ρ=7.15(kg/m3),
所以当V=2m3时,氧气的密度为7.15(kg/m3).
【点评】现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.
17.(9分)一个盒中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸取一个小球然后放回,再随机摸出一个小球.
(Ⅰ)请用列表法(或画树状图法)列出所有可能的结果;
(Ⅱ)求两次取出的小球标号相同的概率;
(Ⅲ)求两次取出的小球标号的和大于6的概率.
【分析】(Ⅰ)根据题意可画出树状图,由树状图即可求得所有可能的结果.
(Ⅱ)根据树状图,即可求得两次取出的小球标号相同的情况,然后利用概率公式求解即可求得答案.
(Ⅲ)根据树状图,即可求得两次取出的小球标号的和大于6的情况,然后利用概率公式求解即可求得答案.
【解答】解:(Ⅰ)画树状图得:
(Ⅱ)∵共有16种等可能的结果,两次取出的小球的标号相同的有4种情况,
∴两次取出的小球标号相同的概率为=;
(Ⅲ)∵共有16种等可能的结果,两次取出的小球标号的和大于6的有3种结果,
∴两次取出的小球标号的和大于6的概率为.
【点评】此题考查了列表法与树状图法求概率的知识.此题难度不大,解题的关键是注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.
18.(9分)已知关于x的方程x2﹣(m+1)x+2(m﹣1)=0
(1)求证:无论m取何值时,方程总有实数根;
(2)若等腰三角形一边长为4,另两边恰好是此方程的根,求此三角形的另两边长.
【分析】(1)根据方程的系数结合根的判别式,即可得出△=(m﹣3)2≥0,由此即可证出:无论m取何值,这个方程总有实数根;
(2)分腰长为4和底边长度为4两种情况分别求解可得.
【解答】解:(1)证明:∵△=[﹣(m+1)]2﹣4×2(m﹣1)=m2﹣6m+9=(m﹣3)2≥0,
∴无论m取何值,这个方程总有实数根;
(2)若腰长为4,将x=4代入原方程,得:16﹣4(m+1)+2(m﹣1)=0,
解得:m=5,
∴原方程为x2﹣6x+8=0,
解得:x1=2,x2=4.
组成三角形的三边长度为2、4、4;
若底边长为4,则此方程有两个相等实数根,
∴△=0,即m=3,
此时方程为x2﹣4x+4=0,
解得:x1=x2=2,
由于2+2=4,不能构成三角形,舍去;
所以三角形另外两边长度为4和2.
【点评】本题考查了根的判别式、三角形三边关系、等腰三角形的性质以及解一元二次方程,解题的关键是:(1)牢记“当△≥0时,方程有实数根”;(2)代入x=4求出m值.
19.(9分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,
(Ⅰ)求证:△AFE∽△CFD;
(Ⅱ)若AB=4,AD=3,求CF的长.
【分析】(Ⅰ)根据矩形对边平行,有AE∥DC,可知△AFE∽△CFD;
(Ⅱ)根据相似三角形的性质可得,再利用已知线段的长代入即可求出CF的长.
【解答】(Ⅰ)证明:∵四边形ABCD是矩形,
∴AE∥DC
∴∠FAE=∠FCD,∠FEA=∠FDC
∴△AFE∽△CFD
故△AFE∽△CFD得证.
(Ⅱ)解:由(1)知△AFE∽△CFD,
∴
而E是边AB的中点,且AB=4,AD=3
∴AE=2,AC=5
∴==
而AC=5
∴AF=,CF=
故CF的长为.
【点评】本题考查的是相似三角形的判定与性质,根据对应边成比例即可利用已知线段求出未知线段的长度.
20.(9分)如图,AB为⊙O的直径,C、F为⊙O上两点,且点C为弧BF的中点,过点C作AF的垂线,交AF的延长线于点E,交AB的延长线于点D.
(1)求证:DE是⊙O的切线;
(2)若AE=3,DE=4,求⊙O的半径的长.
【分析】(1)连接OC,如图,由弧BC=弧CF得到∠BAC=∠FAC,加上∠OCA=∠OAC.则∠OCA=∠FAC,所以OC∥AE,从而得到OC⊥DE,然后根据切线的判定定理得到结论;
(2)利用勾股定理计算出AD=5,然后再证得△OCD∽△AED,得出,则,解得结果即可.
【解答】(1)证明:连接OC,
∵点C为弧BF的中点,
∴弧BC=弧CF.∴∠BAC=∠FAC,
∵OA=OC,
∴∠OCA=∠OAC.
∴∠OCA=∠FAC,
∴OC∥AE,
∵AE⊥DE,
∴OC⊥DE.
∴DE是⊙O的切线.
(2)解:由勾股定理得AD=5,
∵∠OCD=∠AEC=90°,
∠D=∠D,
∴△OCD∽△AED,
∴,
即,
解得r=,
∴⊙O的半径长为.
【点评】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.
21.(10分)如图,一次函数y=x+4的图象与反比例函数y=(k为常数且k≠0)的图象交于A(﹣1,a),B两点,与x轴交于点C.
(1)求此反比例函数的表达式;
(2)若点P在x轴上,且S△ACP=S△BOC,求点P的坐标.
【分析】(1)利用点A在y=﹣x+4上求a,进而代入反比例函数y=求k.
(2)联立方程求出交点,设出点P坐标表示三角形面积,求出P点坐标.
【解答】解:(1)把点A(﹣1,a)代入y=x+4,得a=3,
∴A(﹣1,3)
把A(﹣1,3)代入反比例函数y=
∴k=﹣3,
∴反比例函数的表达式为y=﹣
(2)联立两个函数的表达式得
解得
或
∴点B的坐标为B(﹣3,1)
当y=x+4=0时,得x=﹣4
∴点C(﹣4,0)
设点P的坐标为(x,0)
∵S△ACP=S△BOC
∴
解得x1=﹣6,x2=﹣2
∴点P(﹣6,0)或(﹣2,0)
【点评】本题是一次函数和反比例函数综合题,考查利用方程思想求函数解析式,通过联立方程求交点坐标以及在数形结合基础上的面积表达.
22.(10分)数学兴趣小组活动中,小明进行数学探究活动,将边长为的正方形ABCD与边长为的正方形AEFG按图1位置放置,AD与AE在同一条直线上,AB与AG在同一条直线上.
(1)小明发现DG⊥BE,请你帮他说明理由.
(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.
【分析】(1)由正方形的性质可证△ADG≌△ABE(SAS),因此可证得∠AGD=∠AEB,延长EB交DG于点H,然后由三角形的内角和和直角三角形的两锐角互余可证得结论;由正方形的性质和等量代换可证△ADG≌△ABE(SAS),因此可证得DG=BE;
(2)过点A作AM⊥DG交DG于点M,根据正方形的性质可证得DM=AM=,然后根据勾股定理可求得GM的长,进而可求得BE=DG=DM+GM;
【解答】解:(1)四边形ABCD与四边形AEFG是正方形,
∴AD=AB,∠DAG=∠BAE=90°,AG=AE
在△ADG和△ABE中,,
∴△ADG≌△ABE(SAS),
∴∠AGD=∠AEB,
如图1,延长EB交DG于点H,
∵△ADG中∠AGD+∠ADG=90°,
∴∠AEB+∠ADG=90°,
∵△DEH中,∠AEB+∠ADG+∠DHE=180°,
∴∠DHE=90°,
∴DG⊥BE;
(2)∵四边形ABCD与四边形AEFG是正方形,
∴AD=AB,∠DAB=∠GAE=90°,AG=AE,
∴∠DAB+∠BAG=∠GAE+∠BAG,
∴∠DAG=∠BAE,
在△ADG和△ABE中,,
∴△ADG≌△ABE(SAS),
∴DG=BE,
如图2,过点A作AM⊥DG交DG于点M,
∠AMD=∠AMG=90°,
∵BD是正方形ABCD的对角线,
∴∠MDA=∠MDA=∠MAB=45°,BD=2,
∴AM=BD=1,
在Rt△AMG中,
∵AM2+CM2=AG2,
∴GM=2,
∵DG=DM+GM=1+2=3,
∴BE=DG=3.
【点评】本题主要考查了正方形的性质,锐角三角函数,解本题的关键是全等三角形的性质和判定以及勾股定理的综合应用.
23.(11分)如图,在平面直角坐标系中,直线y=﹣x+3与x轴,y轴分别交于点A,点B,抛物线y=ax2+bx+c(a≠0)经过A,B与点C(﹣1,0).
(1)求抛物线的解析式;
(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为D,交线段AB于点E.设点P的横坐标为m.
①求△PAB的面积y关于m的函数关系式,当m为何值时,y有最大值,最大值是多少?
②若点E是垂线段PD的三等分点,求点P的坐标.
【分析】(1)解方程得到A(3,0),B(0,3),解方程组即可得到结论;
(2)①根据已知条件得到P(m,﹣m2+2m+3),求得E(m,﹣m+3),于是得到PE=﹣m2+2m+3+m﹣3=﹣m2+3m,根据三角形的面积公式即可得到结论;②当PE=2ED时,解方程得到m=2或m=3(不会题意舍去),当2PE=ED时,此方程无实数根,于是得到结论.
【解答】解:(1)∵直线y=﹣x+3与x轴,y轴分别交于点A,点B,
∴A(3,0),B(0,3),
把A(3,0),B(0,3),C(﹣1,0)代入y=ax2+bx+c得,,
解得:,
∴抛物线的解析式为:y=﹣x2+2x+3;
(2)①∵点P的横坐标为m,
∴P(m,﹣m2+2m+3),
∵PD⊥x轴,
∴E(m,﹣m+3),
∴PE=﹣m2+2m+3+m﹣3=﹣m2+3m,
∴y=(﹣m2+3m)•m+(﹣m2+3m)(3﹣m),
∴y关于m的函数关系式为:y=﹣m2+m,
∵y=﹣m2+m=﹣(m﹣)2+,
∴当m=时,y有最大值,最大值是;
②当PE=2ED时,
即﹣m2+3m=2(﹣m+3),
解得:m=2或m=3(不和题意舍去),
当2PE=ED时,
即﹣2m2+6m=﹣m+3,
整理得,2m2﹣7m+3=0,
解得:m=,m=3,(不合题意舍去),
∴P(2,3),(,).
【点评】本题主要考查的是待定系数法求二次函数的解析式、一次函数与坐标轴的交点,二次函数的性质,正确的理解题意是解题的关键.
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布
日期:2020/11/28 17:57:23;用户:13784622801;邮箱:13784622801;学号:37960971
相关试卷
2023-2024学年河南省商丘市梁园区九年级(上)期末数学试卷(含解析):
这是一份2023-2024学年河南省商丘市梁园区九年级(上)期末数学试卷(含解析),共22页。试卷主要包含了选择题,第四象限,解答题等内容,欢迎下载使用。
2023-2024学年河南省商丘市梁园区七年级(上)期末数学试卷(含解析):
这是一份2023-2024学年河南省商丘市梁园区七年级(上)期末数学试卷(含解析),共15页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
河南省商丘市梁园区2021-2022学年七年级(上)期中数学试卷(含解析):
这是一份河南省商丘市梁园区2021-2022学年七年级(上)期中数学试卷(含解析),共15页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。