终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    (通用版)中考数学二轮复习《构造基本图形巧解含45º角的问题》专题训练题(含答案)

    立即下载
    加入资料篮
    (通用版)中考数学二轮复习《构造基本图形巧解含45º角的问题》专题训练题(含答案)第1页
    (通用版)中考数学二轮复习《构造基本图形巧解含45º角的问题》专题训练题(含答案)第2页
    (通用版)中考数学二轮复习《构造基本图形巧解含45º角的问题》专题训练题(含答案)第3页
    还剩5页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    (通用版)中考数学二轮复习《构造基本图形巧解含45º角的问题》专题训练题(含答案)

    展开

    这是一份(通用版)中考数学二轮复习《构造基本图形巧解含45º角的问题》专题训练题(含答案),共8页。试卷主要包含了试题呈现,共同解法展示,解题后的反思等内容,欢迎下载使用。
    构造基本图形巧解含45º角的问题    本文以两道含有45º角的中考试题为载体,分析这类问题的共同特点和解法,供同学们参考.    一、试题呈现    1  (2017年丽水中考题)如图1,在平面直角坐标系中,直线分别交轴,轴于两点,已知点.    (l);(2)为线段的中点,连结,则的值是        .    2  (2017年金华中考题)如图2,已知点和点,点在反比例函数的图象上.作射线,再将射线绕点按照逆时针方向旋转45º,交反比例函数的图象于点,则点的坐标是        .    上面的两道中考填空题,虽然形式上不太一样,但是有着一个共同的特点,都存在一个45º的特殊角.因此,如何利用45º角成为了解题的突破口,45º角的两边与轴的交点都形成了一个类似的三角形,因此这两道题有着如下的共同解法.    、共同解法展示    1.构造一线三等角,利用相似三角形丽水题解法1  如图3,在轴截取,此时,可以证得.进而得到方程解得.金华题解法1  如图4,过点作等腰直角,作,连结,易得.    可以证得[来源:Z,xx,k.Com]解得.求出的解析式为,    再与联列方程,得到点坐标为.    分析  一线三等角是一种常见的建立三角形相似的方法.该模型在这两小题的应用中看上去有些异常,一个只有两等角,另一个根本不存在等角,所以我们利用45º的角去构造等腰直角三角形,形成一线三等角的基本模型,再利用相似三角形的基本性质列出方程.    2.构造三垂型模型,利用全等三角形丽水题解法2  如图5,过点,交于点,再作轴,易得.列出方程解得.金华题解法2  如图6,过点,构造如图所示的辅助线,易得    .的坐标为可得.因为点在直线上,可以求得点的坐标为进而求得.,列出方程2:    解得(舍去).[来源:学科网]    所以点的坐标为.[来源:学科网]    分析  三垂型模型是一个基本图形.该模型不仅可以找到全等的三角形,也可以用来证明勾股定理.看到45º角可以构造等腰直角三角形,进而形成三垂型模型.    3.构造角平分线,运用内角平分线的性质预备知识:如图7的角平分线,则有(证略).[来源:Zxxk.Com]丽水题解法3 如图8,过点.,所以的角平分线,,并且求出的坐标可得解得.[来源:学科网]    金华题解法3  如图9,方法同上.    分析  由于45º90º的一半,构造了角平分线,恰好可以利用三角形内角平分线的基本性质,45º这一条件,让人产生了很多遐想,补全直角也是一种常见的手段.    4.构造正方,借用正方形旋转预备知识:如图10,正方形,点分别在上,且,求证:.(证略)丽水题解法4  如图11,过点构造正方形.根据预备知识得到.,在中有解得.金华题解法4  如图12 .设点[来源:Zxxk.Com].[来源:Z|xx|k.Com]利用预备知识,[来源:Zxxk.Com]可得.在直角中,    解得,得.    分析  半角模型也是一种常见的基本图形,这类问题一般利用旋转完成,可以得到全等三角形,进而得到线段之间的关系.    5.构造三角形的高,回到匀股定理    丽水题解法5  如图13,作,可知为等腰直角三角.        易得.中,利用勾股定理,得[来源:Zxxk.Com]解得.    金华题解法5  如图14,作(后面计算可得重合).    ,则.得到.    分析遇到直角问题,有时要回归到勾股定理,利用勾股定理能够列出方程.尤其在折叠问题中,我们经常会利用勾股定理构造方程.本题中依靠构造等腰直角三角形,同时得到,一箭双雕.    6.构造四点共圆,运用两点间的距离公式丽水题解法6  如图15,以为直角边构造等腰直角.所以四点共圆,且以为直径,为圆心.[来源:**]根据,可得解得.    金华题解法6如图16,方法同上.    分析四点共圆是一种常见的基本图形,它可以运用同弧所对的圆周角相等,半径相等直径所对的圆周角是直角等一系列知识点,灵活多变.    三、解题后的反思    1.明确解题方向,确定解题途径    这两道中考题都是以函数为载体的几何问题,以上的解法都充分利用了数形结合,把题中的转化为运算,达到化形为数的目的,这是解决问题的关键所在,也是基本思路,有了这些基本思路就有了解决问题的方向在解决函数中的几何问题时,一定要充分利用几何的基本性质,抓住问题表象中的隐含条件,利用几何性质的同时结合平面直角坐标系的有关计算,达到几何与代数的完美结合.上述解法中的勾股定理和三角形的相似与全等,等腰直角三角形的性质的运用,既在意料之外,又在情理之中,顺其自然,水到渠成.    2.抓住问题本质,学会异中求同    以上两道题目看似不同,却有着共同的本质,可以称得上是多题一解.数学问题千变万化,仅仅依靠题海战术是很难抓住数学的本质,盲目地做题还不如静下心来去思考.我们应该由表及里,发现题与题之间的内在联系,抓住问题的本质达到有效的解题.一题多解能拓展思维的广度,多题一解更能挖掘思维的深度,因此,我们在数学解题教学中,要两者兼顾,做到收放自如.    3.活用解题模型,呈现多样解法    基本图形是解决综合性几何问题的一个很好的突破口,从复杂的图形中抽出简单的图形,利用基本图形的性质往往可以化难为易,顺利得解.我们要通过解题教学,达到学会思考这一核心的教学理念,注重解题的方法,加强知识之间的迁移,从而提高解题能力.

    相关试卷

    专题17 构造辅助圆巧解隐圆问题(带模型原卷版):

    这是一份专题17 构造辅助圆巧解隐圆问题(带模型原卷版),共6页。

    (通用版)中考数学二轮复习《五种基本图形在解题中的应用》专题训练题(含答案):

    这是一份(通用版)中考数学二轮复习《五种基本图形在解题中的应用》专题训练题(含答案),共5页。

    (通用版)中考数学二轮复习《解答图形存在问题的两种途径》专题训练题(含答案):

    这是一份(通用版)中考数学二轮复习《解答图形存在问题的两种途径》专题训练题(含答案),共7页。试卷主要包含了从构造方程关系式入手,从构造函数关系式入手等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map