苏科版九年级下册6.7用相似三角形解决问题课时作业
展开这是一份苏科版九年级下册6.7用相似三角形解决问题课时作业,共7页。试卷主要包含了如图,身高为1,2 cm B,2 m B,解得AG=75 m,等内容,欢迎下载使用。
一、选择题
1.如图,身高为1.6米的某学生想测量学校旗杆的高度,当她在C处时,她的影子正好与旗杆的影子重合,并测得AC=2米,BC=8米,则旗杆的高度是( )
A.6.4米 B.7米 C.8米 D.9米
2.如图,比例规是一种画图工具,它由长度相等的两脚AC和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a的两个端点上,当CD=1.8cm时,则AB的长为( )
A.7.2 cm B.5.4 cm C.3.6 cm D.0.6 cm
3.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有杆不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问杆长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺.同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为( )
A.五丈 B.四丈五尺 C.一丈 D.五尺
4.学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC位置,已知AB⊥BD,CD⊥BD,垂足分别为B,D,AO=4 m,AB=1.6 m,CO=1 m,则栏杆C端应下降的垂直距离CD为( )
A.0.2 m B.0.3 m C.0.4 m D.0.5 m
5.如图,铁道口的栏杆短臂OA长1m,长臂OB长8m.当短臂外端A下降0.5m时,
长臂外端B升高( )
A.2m B.4m D.8m
6.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1 m的竹竿的影长为0.4 m,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2 m,一级台阶高为0.3 m,如图所示,若此时落在地面上的影长为4.4 m,则树高为( )
A.11.5 m m C.11.8 m m
7.小明在测量楼高时,先测出楼房落在地面上的影长BA为15米(如图),然后在A处树立一根高2米的标杆,测得标杆的影长AC为3米,则楼高为( )
A.10米 B.12米 C.15米 D.22.5米
8.如图是小明设计用手电来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是( )
A.6米 B.8米 C.18米 D.24米
9.已知如图,小明在打网球时,要使球恰好能打过网,而且落在离网5m的位置上,
则球拍击球的高度h应为( )
10.锐角△ABC中,BC=6,S△ABC=12,两动点M,N分别在边AB,AC上滑动,且MN∥BC,MP⊥BC,NQ⊥BC得矩形MPQN.设MN的长为x,矩形MPQN的面积为y,则y关于x的函数图象大致形状是( )
A. B. C. D.
二、填空题
11.如图,放映幻灯时,通过光源,把幻灯片上的图形放大到屏幕上.若幻灯片到光源的距离为20 cm,到屏幕的距离为40 cm,且幻灯片中图形的高度为6 cm,则屏幕上图形的高度为 cm.
12.如图,已知零件的外径为25 mm,现用一个交叉卡钳(两条尺长AC和BD相等,OC=OD)量零件的内孔直径AB.若OC∶OA=1∶2,量得CD=10 mm,则零件的厚度x= mm.
13.如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120 m,DC=60 m,EC=50 m,求得河宽AB= m.
14.如图,阳光通过窗口照到室内,在地面上留下1.6m宽的亮区DE,已知亮区一边到窗下的墙脚距离CE=3.6m,窗高AB=1.2m,那么窗口底边离地面的高度BC=_______m.
15.如图,四边形ABCD中,AD∥BC,CM是∠BCD的平分线,且CM⊥AB,M为垂足,AM=13AB.若四边形ABCD的面积为157,则四边形AMCD的面积是 .
16.如图,一等腰三角形,底边长是18厘米,底边上的高是18厘米,现在沿底边依次从下往上画宽度均为3厘米的矩形,画出的矩形是正方形时停止,则这个矩形是第________个.
三、解答题
17.如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上.
已知DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米,
求旗杆的高度.
18.如图,一条小河的两岸有一段是平行的,在河的一岸每隔6m有一棵树,在河的对岸每隔60m有一根电线杆,在有树的一岸离岸边30m处可看到对岸相邻的两根电线杆恰好被这岸的两棵树遮住,并且在这两棵树之间还有三棵树,求河的宽度.
19.一位同学想利用树影测出树高,他在某时刻测得直立的标杆高1米,影长是0.9米,但他去测树影时,发现树影的上半部分落在墙CD上,(如图所示)他测得BC= 2.7米,CD=1.2米。你能帮他求出树高为多少米吗?
20.如图,Rt△ABC中,∠ACB=90°,AC=6 cm,BC=8 cm,动点P从点B出发,在BA边上以每秒5 cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4 cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.若以B,P,Q为顶点的三角形与△ABC相似,求t的值.
参考答案
1.答案为:C
2.答案为:B.
3.答案为:B
4.答案为:C
5.答案为:B.
6.答案为:C.
7.答案为:A.
8.答案为:B.
9.答案为:A.
10.答案为:B.
11.答案为:18.
12.答案为:2.5.
13.答案为:100
14.答案为:1.5.
15.答案为:1 .
16.答案为:5
17.解:由题意可得:△DEF∽△DCA,
则 SKIPIF 1 < 0 ,
∵DE=0.5米,EF=0.25米,DG=1.5m,DC=20m,
∴ SKIPIF 1 < 0 ,解得:AC=10,
故AB=AC+BC=10+1.5=11.5(m),
答:旗杆的高度为11.5m.
18.解:如图,过点A作AF⊥DE,垂足为F,并延长交BC于点G.
∵DE∥BC,∴△ADE∽△ABC.
∵AF⊥DE,DE∥BC,∴AG⊥BC,
∴eq \f(AF,AG)=eq \f(DE,BC),∴eq \f(30,AG)=eq \f(24,60).解得AG=75 m,
∴FG=AG-AF=75-30=45(m).
即河的宽度为45 m.
19.解:
得AB-1.2=3,
故AB=4.2米即树高为4.2米.
20.解:由题意,得BP=5t,QC=4t,AB=10 cm,BC=8 cm.
①∵∠PBQ=∠ABC,
∴若△BPQ∽△BAC,则还需eq \f(BP,BA)=eq \f(BQ,BC),
即eq \f(5t,10)=eq \f(8-4t,8).解得t=1;
②∵∠PBQ=∠CBA,
∴若△BPQ∽△BCA,则还需eq \f(BP,BC)=eq \f(BQ,BA),
即eq \f(5t,8)=eq \f(8-4t,10).解得t=eq \f(32,41).
综上所述,当t=1或eq \f(32,41)时,以B,P,Q为顶点的三角形与△ABC相似.
相关试卷
这是一份数学6.7用相似三角形解决问题习题,共8页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份数学苏科版第6章 图形的相似6.7用相似三角形解决问题精品练习题,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份初中数学6.7用相似三角形解决问题巩固练习,共7页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。