所属成套资源:秋人教版八年级数学同步练习(含答案)
初中数学人教版八年级上册12.3 角的平分线的性质综合训练题
展开这是一份初中数学人教版八年级上册12.3 角的平分线的性质综合训练题,文件包含专题123角平分线的性质讲练-2020-2022八年级上册同步讲练原卷版人教版docx、专题123角平分线的性质讲练-2020-2022八年级上册同步讲练解析版人教版docx等2份试卷配套教学资源,其中试卷共47页, 欢迎下载使用。
专题12.3 角平分线的性质
典例体系
一、知识点
1.角的平分线的作法;
2.角的平分线的性质定理:角的平分线上的点到角的两边的距离相等;
3.证明一个几何中的命题,一般步骤:
①明确命题中的已知和求证;
②根据题意,画出图形,并用数学符号表示已知和求证;
③经过分析,找出由已知推出求证的途径,写出证明过程;
4.性质定理的逆定理:角的内部到角两边的距离相等的点在角的平分线上;
二、考点点拨与训练
考点1:角平分线性质定理及其应用
典例:(2020·河北省初二期末)如图,在△ABC中,D是BC边上的点(不与点B,C重合),连结AD
(1)如图1,当点D是BC边上的中点时,则S△ABD:S△ACD=_________(直接写出答案)
(2)如图2,当AD是∠BAC的平分线时,若AB=m,AC=n,S△ABD:S△ACD=_________ (用含m,n的代数式表示).
(3)如图3,AD平分∠BAC,延长AD到E,使得AD=DE,连结BE,如果AC=2,AB=4,S△BDE =6,求△ABC的面积.
【答案】(1)1:1;(2)m∶n;(3)9
【解析】
解:(1)过A作AE⊥BC于E,
∵点D是BC边上的中点,
∴BD=DC,
∴SABD:S△ACD=(×BD×AE):(×CD×AE)=1:1,
故答案为:1:1;
(2)过D作DE⊥AB于E,DF⊥AC于F,
∵AD为∠BAC的角平分线,
∴DE=DF,
∵AB=m,AC=n,
∴SABD:S△ACD=(×AB×DE):(×AC×DF)=m:n;
(3)∵AD=DE,
∴由(1)知:S△ABD:S△EBD=1:1,
∵S△BDE=6,
∴S△ABD=6,
∵AC=2,AB=4,AD平分∠CAB,
∴由(2)知:S△ABD:S△ACD=AB:AC=4:2=2:1,
∴S△ACD=3,
∴S△ABC=3+6=9,
故答案为:9.
方法或规律点拨
本题考查了角平分线性质和三角形的面积公式,能根据(1)(2)得出规律是解此题的关键.
巩固练习
1.(2019·广东省深圳外国语学校初一期末)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,AD平分∠CAB交BC于D点,E,F分别是AD,AC上的动点,则CE+EF的最小值为( )
A. B. C.3 D.
【答案】D
【解析】解:在AB上取一点G,使AG=AF
∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4
∴AB=5,
∵∠CAD=∠BAD,AE=AE
∴△AEF≌△AEG(SAS)
∴FE=FG
∴CE+EF=CE+EG
则最小值时CG垂直AB时,CG的长度
CG=
故选D.
2.(2020·山东省济南外国语学校初二期中)如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为用A、B.下列结论中不一定成立的是( )
A.PA=PE B.PO平分∠APB C.AB垂直平分OP D.OA=OB
【答案】C
【解析】解:∵OP平分,,
∴,选项A正确;
在Rt△AOP和Rt△BOP中,
,
∴Rt△AOPRt△BOP
∴,OA=OB,选项D正确;
∴PO平分∠APB,选项B正确;
由等腰三角形三线合一的性质,OP垂直平分AB,AB不一定垂直平分OP,选项C错误.
故选:C.
3.(2020·辽宁省初三其他)如图,在中,,以顶点为圆心,适当长为半径画弧,分别交,于点,,再分别以点,为圆心,大于的长为半径画弧,两弧交于点,作射线交边于点,若,,则的面积是 ( )
A.15 B.30 C.45 D.60
【答案】B
【解析】解:作DE⊥AB于E,
由基本尺规作图可知,AD是△ABC的角平分线,
∵∠C=90°,DE⊥AB,
∴DE=CD=4,
∴△ABD的面积=AB×DE=×15×4=30,
故选:B.
4.(2020·南通市八一中学初一月考)如图,a、b、c三条公路的位置相交成三角形,现决定在三条公路之间建一购物超市,使超市到三条公路的距离相等,则超市应建在( )
A.三角形两边高线的交点处 B.三角形两边中线的交点处
C.∠α的平分线上 D.∠α和∠β的平分线的交点处
【答案】D
【解析】∵如图,要建一超市到a、b、c三条公路的距离相等,
∴该超市是△ABC的内心,
∴超市应该建在∠α和∠β的平分线的交点处.
故选:D.
5.(2020·河南省初三二模)如图,在中,,以点为圆心,适当长为半径画弧,分别交于点,再分别以点为圆心,大于为半径画弧,两弧交于点,作射线交边于点,则的面积是( )
A. B. C. D.
【答案】C
【解析】解:由作法得平分,
点到的距离等于的长,即点到的距离为,
所以的面积.
故选:C.
6.(2020·黑龙江省初二期末)如图所示,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC=3cm,那么AE+DE等于( )
A.2cm B.3cm C.4cm D.5cm
【答案】B
【解析】解:∵△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,
∴EC=DE,
∴AE+DE=AE+EC=3cm.
故选:B.
7.(2019·内蒙古自治区初二期中)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为( )
A.11 B.5.5
C.7 D.3.5
【答案】B
【解析】作DM=DE交AC于M,作DN⊥AC,
∵DE=DG,
∴DM=DE,
∵AD是△ABC的角平分线,DF⊥AB,
∴DE=DN,
∴△DEF≌△DNM,
∵△ADG和△AED的面积分别为50和39,
∴S△MDG=S△ADG﹣S△AMG=590﹣39=11,
S△DNM=S△DEF=S△MDG==5.5
8.(2019·陕西省交大附中分校初一期末)如图,在△ABC中,E为AC的中点,AD平分∠BAC,BA:CA=2:3,AD与BE相交于点O,若△OAE的面积比△BOD的面积大1,则△ABC的面积是( )
A.8 B.9 C.10 D.11
【答案】C
【解析】解:作DM⊥AC于M,DN⊥AB于N.
∵AD平分∠BAC,DM⊥AC于M,DN⊥AB于N,
∴DM=DN,
∴S△ABD:S△ADC=BD:DC=•AB•DN:•AC•DM=AB:AC=2:3,
设△ABC的面积为S.则S△ADC=S,S△BEC=S,
∵△OAE的面积比△BOD的面积大1,
∴△ADC的面积比△BEC的面积大1,
∴S-S=1,
∴S=10,
故选C.
9.(2020·湖北省武汉市江汉区教育局初二月考)在Rt△ABC中,∠C=90°,AB=10,BC=8,AC=6.点I为△ABC三条角平分线的交点,则点I到边AB的距离为__________
【答案】2
【解析】∵在△ABC中,∠C=90°,BC=8,CA=6,AB=10,
∵点I为△ABC的三条角平分线的交点,
∴IE=IF=ID,
设IE=x,
∵S△ABC=S△IAB+S△IAC+S△ICB,
∴×6×8=IF×10+IE×6+ID×8,
∴5x+3x+4x=24,
∴x=2,
∴点I到AB的距离等于2.
故答案为:2.
10.(2019·湖北省初二期中)如图,∠B=∠C=90°,DM平分∠ADC,AM平分∠DAB,CB=8,则点M到BC的距离_______.
【答案】4
【解析】如图,过点M作ME⊥AD于E,
∵AM平分∠DAB,DM平分∠ADC,∠B=∠C=90°,
∴BM=ME,CM=EM,
∴BM=CM,
∵BC=8,
∴,
∴ME=4,
即点M到AD的距离为4.
故答案为:4.
11.(2020·上饶市广信区第七中学初二月考)如图,的三边 的长分别为,其三条角平分线交于点,则=______.
【答案】
【解析】解:过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,
∵OA,OB,OC是△ABC的三条角平分线,
∴OD=OE=OF,
∵△ABC的三边AB、BC、CA长分别为40、50、60,
∴S△ABO:S△BCO:S△CAO=(AB•OD):(BC•OF):(AC•OE)
=AB:BC:AC=40:50:60=.
故答案为:.
12.(2019·眉山东辰国际学校初一期末)如图,BD平分∠ABC,DE⊥AB于E,DF⊥BC于F,AB=6,BC=8.若S△ABC=21,则DE=________.
【答案】3
【解析】∵BD平分∠ABC,DE⊥AB,DF⊥BC,
∴DE=DF,
∵S△ABC=21,AB=6,BC=8,
∴×6×DE+×8×DF=21,
即7DE=21,
∴DE=3.
故答案为:3.
13.(2019·深圳市明德外语实验学校初二期中)如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF.
(1)求证:CF=EB.
(2)若AF=2,EB=1,求AB的长.
【答案】(1)证明见解析;(2)4
【解析】(1)证明:∵ AD是∠BAC的平分线,∠C=90°,DE⊥AB,
∴ DC=DE,
∵ BD=DF,
∴Rt△DCF≌Rt△DEB(HL),
∴CF=EB;
(2)由(1)知CF=EB=1,
∴AC=AF+FC=3,
又∵∠C=∠AED=90°,∠CAD=∠EAD,AD=AD,
∴△ACD≌△AED(AAS)
∴AC=AE=3,
∴AB=AE+EB=3+1=4.
14.(2020·凌海市石山镇初级中学初一月考)已知是的平分线,点是射线上一点,点C、D分别在射线、上,连接PC、PD.
(1)发现问题
如图①,当,时,则PC与PD的数量关系是________.
(2)探究问题
如图②,点C、D在射线OA、OB上滑动,且∠AOB=90°,∠OCP+∠ODP=180°,当时,PC与PD在(1)中的数量关系还成立吗?说明理由.
【答案】(1)PC=PD;(2)PC=PD仍然成立.理由见解析.
【解析】解:(1)∵OM是∠AOB的平分线,PC⊥OA,PD⊥OB,
∴PC=PD,
故答案为:PC=PD;
(2)PC=PD仍然成立.理由如下:
过P分别作PE⊥OB于E,PF⊥OA于F,
∴∠CFP=∠DEP=90°,
∵OM是∠AOB的平分线,∴PE=PF.
∵∠OCP+∠ODP=180°,又∠ODP+∠PDE=180°,
∴∠OCP=∠PDE,即∠FCP=∠PDE,
在△CFP和△DEP中,
,
∴△CFP≌△DEP(AAS),
∴PC=PD.
考点2:角平分线性质定理的逆定理及其应用
典例:(2020·四川省初二期中)如图,在△ABC中,∠BAC的平分线与BC的中垂线DE交于点E,过点E作AC边的垂线,垂足为N,过点E作AB延长线的垂线,垂足为M.
(1)求证:BM=CN;
(2)若,AB=2,AC=8,求BM的长.
【答案】(1)证明见解析;(2)3.
【解析】证明:连接BE,CE,如图,
∴DE是BC的垂直平分线,
∴BE=CE,
∵AE是∠BAC的平分线,EM⊥AB,EN⊥AC,
∴EM=EN,
在Rt△BME和Rt△CNE中,
BE=CEEM=EN,
∴Rt△BME≌Rt△CNE(HL),
∴BM=CN
(2)由(1)得:EM=EN,
在Rt△AME和Rt△ANE中,
AE=AEEM=EN,
∴Rt△AME≌Rt△ANE(HL),
∴AM=AN,又∵AM= AB+BM, AN= AC-CN
∴AB+BM=AC-CN
∴2+ BM=8-CN, 又∵BM=CN
∴BM=CN =3
方法或规律点拨
本题考查全等三角形的判定和性质、角平分线的性质,解题的关键是掌握角平分线的性质以及具体的应用.
巩固练习
1.(2020·福州四十中金山分校初二月考)小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是( )
A.角的内部到角的两边的距离相等的点在角的平分线上
B.角平分线上的点到这个角两边的距离相等
C.三角形三条角平分线的交点到三条边的距离相等
D.以上均不正确
【答案】A
【解析】如图所示:过两把直尺的交点C作CF⊥BO与点F,由题意得CE⊥AO,
∵两把完全相同的长方形直尺,
∴CE=CF,
∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),
故选A.
2.(2020·湖北省中考真题)如图,已知和都是等腰三角形,,交于点F,连接,下列结论:①;②;③平分;④.其中正确结论的个数有( )
A.1个 B.2个 C.3个 D.4个
【答案】C
【解析】解:∵∠BAC=∠EAD
∴∠BAC+∠CAD=∠EAD+∠CAD,即∠BAD=∠CAE
在△BAD和△CAE中
AB=AC, ∠BAD=∠CAE,AD=AE
∴△BAD≌△CAE
∴BD=CE
故①正确;
∵△BAD≌△CAE
∴∠ABF=∠ACF
∵∠ABF+∠BGA=90°、∠BGA=∠CGF
∴∠ACF+∠BGA=90°,
∴∠BFC=90°
故②正确;
分别过A作AM⊥BD、AN⊥CE垂足分别为M、N
∵△BAD≌△CAE
∴S△BAD=S△CAE,
∴
∵BD=CE
∴AM=AN
∴平分∠BFE,无法证明AF平分∠CAD.
故③错误;
∵平分∠BFE,
∴
故④正确.
故答案为C.
3.(2020·四川省正兴中学初二二模)已知,如图,中,,点为的三条角平分线的交点,垂直,,,点、、分别是垂足,且,,,则__________.
【答案】2cm
【解析】解:连接、、,如图,
点为的三条角平分线的交点,垂直,,,
,
设,则,
,
,解得,
即的长为.
故答案为:.
4.(2020·甘肃省平川区四中初二期中)如图,在Rt△ABC中,∠A=90°,点D为斜边BC上一点,且BD=BA,过点D作BC的垂线交AC于点E.求证:点E在∠ABC的角平分线上.
【答案】证明见解析.
【解析】证明:连接BE,
∵ED⊥BC,
∴∠BDE=∠A=90°.
在Rt△ABE和Rt△DBE中
∵,
∴Rt△ABE≌Rt△DBE(HL).
∴∠ABE=∠DBE.
∴点E在∠ABC的角平分线上.
5.(2020·甘州区南关学校初二月考)如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.
(1)求证:△BCE≌△DCF;
(2)求证:AB+AD=2AE.
【答案】详见解析
【解析】(1)证明:∵AC是角平分线,CE⊥AB于E,CF⊥AD于F,
∴CE=CF,∠F=∠CEB=90°,
在Rt△BCE和Rt△DCF中,
∴△BCE≌△DCF;
(2)解:∵CE⊥AB于E,CF⊥AD于F,
∴∠F=∠CEA=90°,
在Rt△FAC和Rt△EAC中,,
∴Rt△FAC≌Rt△EAC,
∴AF=AE,
∵△BCE≌△DCF,
∴BE=DF,
∴AB+AD=(AE+BE)+(AF﹣DF)=AE+BE+AE﹣DF=2AE.
6.(2019·云龙县第三中学初二期中)如图,BE⊥AC、CF⊥AB于点E、F,BE与CF交于点D,DE=DF,连接AD.
求证:(1)∠FAD=∠EAD;
(2)BD=CD.
【答案】(1)证明见解析;证明见解析.
【解析】证明:(1)∵BE⊥AC、CF⊥AB,DE=DF,
∴AD是∠BAC的平分线,
∴∠FAD=∠EAD;
(2)∵△ADF与△ADE是直角三角形,DE=DF,AD=AD,
∴Rt△ADF≌Rt△ADE,
∴∠ADF=∠ADE,
∵∠BDF=∠CDE,
∴∠ADF+∠BDF=∠ADF+∠CDE,
即∠ADB=∠ADC,
在△ABD≌△ACD中,
,
∴△ABD≌△ACD,
∴BD=CD.
7.(2018·江苏省初二期中)已知:如图中,,,垂足分别为F、E,交于点D,,求证:D点在的平分线上.
【答案】证明见解析
【解析】
证明:连接AD,
∵,,
∴∠BED=∠CFD=90°,
在△BDE与△CDF中,
,
∴△BDE≌△CDF(AAS),
∴DE=DF,
∴AD是∠BAC的角平分线,
∴D点在的平分线上.
考点3:与角平分线有关的尺规作图
典例:(2020·河北省中考真题)如图1,已知,用尺规作它的角平分线.
如图2,步骤如下,
第一步:以为圆心,以为半径画弧,分别交射线,于点,;
第二步:分别以,为圆心,以为半径画弧,两弧在内部交于点;
第三步:画射线.射线即为所求.
下列正确的是( )
A.,均无限制 B.,的长
C.有最小限制,无限制 D.,的长
【答案】B
【解析】第一步:以为圆心,适当长为半径画弧,分别交射线,于点,;
∴;
第二步:分别以,为圆心,大于的长为半径画弧,两弧在内部交于点;
∴的长;
第三步:画射线.射线即为所求.
综上,答案为:;的长,
故选:B.
方法或规律点拨
本题主要考查了基本作图,解决问题的关键是掌握作角平分线的方法.
巩固练习
1.(2020·广西壮族自治区初三其他)如图尺规作业,为的平分线,这样的作法依据是( )
A. B. C. D.
【答案】A
【解析】连接CE、CD,
在△OEC和△ODC中,
,
∴△OEC≌△ODC(SSS),
故选:A.
2.(2020·河南省初二月考)如图,△ABC 中,点 E,F,G 分别在 BC,AC,AB 上,AE 与 BF 交于点 O,且点 O 在 CG 上,根据尺规作图的痕迹,判断下列说法不正确的是( )
A.AE,BF 是△ABC 的角平分线 B.点 O 到△ABC 三边的距离相等
C.CG 也是△ABC 的一条角平分线 D.AO=BO=CO
【答案】D
【解析】A、由尺规作图的痕迹可知:AE、BF是△ABC的内角平分线,正确;
B、因为角平分线的点到角两边的距离相等得:点O到△ABC三边的距离相等,正确;
C、根据三角形三条角平分线交于一点,且点O在CG上,所以CG也是△ABC的一条内角平分线,正确
D、三角形三边中垂线的交点到三个顶点的距离相等,所以选项D不正确;
故选D.
3.(2020·新疆维吾尔自治区初三其他)如图,在中,尺规作图如下:在射线、上,分别截取、,使;分别以点和点为圆心、大于的长为半径作弧,两弧相交于点;作射线,连结、.下列结论不一定成立的是( )
A. B. C. D.
【答案】A
【解析】解:根据题意,得:OE=OD,CE=CD,OC=OC,∴△OEC≌△ODC(SSS),
∴,,∴B、C、D三项是正确的,而不一定成立.
故选 :A.
4.(2020·广东省仙田外国语学校初一期中)如图所示,已知∠AOB=40°,现按照以下步骤作图:
①在OA,OB上分别截取线段OD,OE,使OD=OE;
②分别以D,E为圆心,以大于DE的长为半径画弧,在∠AOB内两弧交于点C;
③作射线OC.
则∠AOC的大小为_________.
【答案】20°.
【解析】根据画图的方法可知:OC是∠AOB的角平分线,
∴∠AOC=40°÷2=20°.
故答案是:20°.
5.(2020·内蒙古自治区初二期末)如图,在Rt△ABC中,∠C=90°,以点A为圆心,任意长为半径画弧,分别交AC、AB于点M、N,再分别以M、N为圆心,任意长为半径画弧,两弧交于点O,作射线AO交BC于点D,若CD=3,P为AB上一动点,则PD的最小值为_____.
【答案】3
【解析】根据作图的过程可知,AD是∠BAC的平分线.
根据角平分线上的点到角的两边距离相等,又因为点到直线的距离,垂线段最短可得PD最小=CD=3.
故答案为:3.
6.(2020·湖南省中考真题)人教版初中数学教科书八年级上册第48页告诉我们一种作已知角的平分线的方法:
已知:
求作:的平分线
做法:(1)以O为圆心,适当长为半径画弧,交OA于点M,交OB于点N,
(2)分别以点M,N为圆心,大于的长为半径画弧,两弧在的内部相交于点C
(3)画射线OC,射线OC即为所求.
请你根据提供的材料完成下面问题:
(1)这种作已知角平分线的方法的依据是__________________(填序号).
① ② ③ ④
(2)请你证明OC为的平分线.
【答案】(1)①;(2)证明见解析
【解析】(1)根据作图的过程知道:OM=ON,OC=OC,CM=CM,所以由全等三角形的判定定理SSS可以证得△EOC≌△DOC,从而得到OC为的平分线;
故答案为:①;
(2)如图,
连接MC、NC.
根据作图的过程知,
在△MOC与△NOC中,
,
∴△MOC≌△NOC(SSS),
∠AOC=∠BOC,
∴OC为的平分线.
7.(2020·云南省初三二模)如图所示,在△ABC中,按以下步骤作图:①以点B为圆心,任意长为半径作弧,分别交BA、BC于点M、N;再以点N为圆心,MN长为半径作弧交前面的弧于点F,作射线BF交AC的延长线于点E.
②以点B为圆心,BA长为半径作弧交BE于点D,连接CD.
请你观察图形,解答下列问题:
(1)求证:△ABC≌△DBC;
(2)若∠A=100°,∠E=50°,求∠ACB的度数.
【答案】(1)见解析;(2)∠ACB=65°.
【解析】(1)如图所示,连接MN,NF,
由作图可得,BM=BF,MN=FN,BN=BN,
∴△BMN≌△BFN(SSS),
∴∠ABC=∠DBC,
又∵AB=DB,BC=BC,
∴△ABC≌△DBC(SAS);
(2)∵∠A=100°,∠E=50°,
∴∠ABE=30°,
∴∠ABC=∠ABD=15°,
∴∠ACB=180°-∠A-∠ABC=180°-100°-15°=65°.
8.(2019·广西壮族自治区初一期末)如图,平面内有,,,四点,请按要求完成:
(1)尺规作图:连接,作射线,交于点,作射线平分.须保留作图痕迹,且用黑色笔将作图痕迹描黑,不写作法和证明.
(2)在(1)的条件下,若,求的度数.
【答案】(1)作图见解析;(2)
【解析】解:(1)作线段,作射线,
如图,即为所做图形;
(2),射线平分,
9.(2020·佛山市南海外国语学校初三月考)如图,已知在中,点在边上,且.
(1)用尺规作图法,作的平分线,交于点;(保留作图痕迹,不要求写作法)
(2)在(1)的条件下,连接.求证:.
【答案】(1)见解析;(2)见解析
【解析】(1)如图,射线AP为所求作的图形;
(2)∵CP是∠ACB的平分线,如图:
∴∠1=∠2,
在△ABP和△ADP中,
,
∴△ABP△ADP(SAS),
∴PD=PB.
相关试卷
这是一份【同步讲义】人教版数学八年级上册-提高练【12.3 角平分线的性质】 讲义,文件包含提高练123角平分线的性质原卷版docx、提高练123角平分线的性质解析版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。
这是一份【同步讲义】人教版数学八年级上册-基础练【12.3 角平分线的性质】 讲义,文件包含基础练123角平分线的性质原卷版docx、基础练123角平分线的性质解析版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。
这是一份初中人教版14.3 因式分解综合与测试一课一练,文件包含专题143因式分解讲练-2020-2022学年八年级上册同步讲练原卷版人教版docx、专题143因式分解讲练-2020-2022学年八年级上册同步讲练解析版人教版docx等2份试卷配套教学资源,其中试卷共64页, 欢迎下载使用。